linux下安装warpctc,mxnet和python接口配置
nstall baidu warpctcBuild the MXNet core shared libraryStep 1 Install build tools and Git.$ sudo apt-get update$ sudo apt-get install -y build-essential gitStep 2 Install OpenBLAS.MXNet uses BLA
nstall baidu warpctc
Build the MXNet core shared library
Step 1 Install build tools and Git.
$ sudo apt-get update $ sudo apt-get install -y build-essential gitStep 2 Install OpenBLAS.
MXNet uses BLAS library for accelerated numerical computations. There are several flavors of BLAS libraries -OpenBLAS,ATLAS and MKL. In this step we install OpenBLAS. You can choose to install ATLAS or MKL.
$ sudo apt-get install -y libopenblas-devStep 3 Install OpenCV.
MXNet uses OpenCV for efficient image loading and augmentation operations.
$ sudo apt-get install -y libopencv-devStep 4 Download MXNet sources and build MXNet core shared library.
$ git clone --recursive https://github.com/dmlc/mxnet $ cd mxnet $ make -j $(nproc) USE_OPENCV=1 USE_BLAS=openblas USE_CUDA=1 USE_CUDA_PATH=/usr/local/cuda USE_CUDNN=1Note - USE_OPENCV, USE_BLAS, USE_CUDA, USE_CUDA_PATH AND USE_CUDNN are make file flags to set compilation options to use opencv, OpenBLAS, CUDA and cuDNN libraries. You can explore and use more compilation options in
make/config.mk
. Make sure to set USE_CUDA_PATH to right CUDA installation path. In most cases it is -/usr/local/cuda.
Build the MXNet Python binding
Step 1 Install prerequisites - python setup tools and numpy.
$ sudo apt-get install -y python-dev python-setuptools python-numpyStep 2 Build the MXNet Python binding.
$ cd python $ sudo python setup.py install
cd ~/ git clone https://github.com/baidu-research/warp-ctc cd warp-ctc mkdir build cd build cmake .. make sudo make install
Enable warpctc in mxnet
comment out following lines in make/config.mk WARPCTC_PATH = $(HOME)/warp-ctc MXNET_PLUGINS += plugin/warpctc/warpctc.mk rebuild mxnet by make clean &&
make -j $(nproc) USE_OPENCV=1 USE_BLAS=openblas USE_CUDA=1 USE_CUDA_PATH=/usr/local/cuda USE_CUDNN=1
更多推荐
所有评论(0)