分布式限流
最近正在为本科论文的事感到心烦,一方面是在调研期间,发现大部分的本科论文都是以MVC为架构,如果是使用了java作为开发语言则又是千篇一律的在使用SSH,二方面是自己想就微服务,分布式方面写一篇论文,讲述一些技术点的实现,和一些中间件的使用,看到如八股文般的模板格式..不免让人望文生怯。退一步,投入模板化ssh-web项目的怀抱,落入俗套,可以省去自己不少时间,因为在外实习,琐事并不少;进一步,需
最近正在为本科论文的事感到心烦,一方面是在调研期间,发现大部分的本科论文都是以MVC为架构,如果是使用了java作为开发语言则又是千篇一律的在使用SSH,二方面是自己想就微服务,分布式方面写一篇论文,讲述一些技术点的实现,和一些中间件的使用,看到如八股文般的模板格式..不免让人望文生怯。退一步,投入模板化ssh-web项目的怀抱,落入俗套,可以省去自己不少时间,因为在外实习,琐事并不少;进一步,需要投入大量时间精力去研究,而且不成体系,没有论文参考。
突然觉得写博客,比写论文爽多了,可以写自己想写的,记录自己最真实的想法。可能会逐渐将之前博客维护的自己的一些想法,纳入到本科论文中去。
说回正题,补上之前分布式限流的实现。先介绍一些现有的限流方案。
核心的算法主要就是四种:
A类:计数器法,滑动窗口法
B类:令牌桶法,漏桶法
这里的四种算法通常都是在应用级别讨论的,这里不重复介绍这四种算法的实现思路了,只不过我人为的将他们分成了A,B两类。
A类算法,是否决式限流。即如果系统设定限流方案是1分钟允许100次调用,那么真实请求1分钟调用200次的话,意味着超出的100次调用,得到的是空结果或者调用频繁异常。
B类算法,是阻塞式限流。即如果系统设定限流方案是1分钟允许100次调用,那么真实请求1分钟调用200次的话,意味着超出的100次调用,会均匀安排到下一分钟返回。(当然B类算法,也可以立即返回失败,也可以达到否决式限流的效果)
B类算法,如Guava包提供的RateLimiter,内部其实就是一个阻塞队列,达到阻塞限流的效果。然后分布式场景下,有一些思路悄悄的发生了变化。多个模块之间不能保证相互阻塞,共享的变量也不在一片内存空间中。为了使用阻塞限流的算法,我们不得不将统计流量放到redis一类的共享内存中,如果操作是一系列复合的操作,我们还不能使用redis自带的CAS操作(CAS操作只能保证单个操作的原子性)或者使用中间件级别的队列来阻塞操作,显示加分布式锁的开销又是非常的巨大。最终选择放弃阻塞式限流,而在分布式场景下,仅仅使用redis+lua脚本的方式来达到分布式-否决式限流的效果。redis执行lua脚本是一个单线程的行为,所以不需要显示加锁,这可以说避免了加锁导致的线程切换开销。
下面记录一下这个设计的演变过程。
- 单体式应用中显示加锁
首先还是回到单体应用中对共享变量进行+1的例子。
Integer count = 0;
//sychronized锁
public synchronized void synchronizedIncrement(){
count++;
}
//juc中的lock
Lock lock = new ReentrantLock();
public void incrementByLock(){
lock.lock();
try{
count++;
}finally {
lock.unlock();
}
}
用synchronized或者lock同步的方式进行统计,当单位时间内到达限定次数后否决执行。限制:单体应用下有效,分布式场景失效,显示加锁,开销大。
- 单体式应用中CAS操作
public AtomicInteger atomicInteger = new AtomicInteger(0);
public increamt(){
atomicInteger.incrementAndGet();
}
虽然没有显示加锁,但是CAS操作有一定的局限性,限流中不仅要对计数器进行+1,而且还要记录时间段,所以复合操作,还是无法避免加锁。
- 分布式应用中显示加锁
RedisDistributeLock lock = new RedisDistributeLock();
public void incrementByLock(){
lock.lock();
try{
count++;
}finally {
lock.unlock();
}
}
分布式阻塞锁的实现,可以参考我之前的博客。虽然能达到多个模块之间的同步,但还是开销过大。不得已时才会考虑使用。
- redis+lua脚本限流(最终方案)
local key = KEYS[1] --限流KEY(一秒一个)
local limit = tonumber(ARGV[1]) --限流大小
local current = tonumber(redis.call('get', key) or "0")
if current + 1 > limit then --如果超出限流大小
redis.call("INCRBY", key,"1") -- 如果不需要统计真是访问量可以不加这行
return 0
else --请求数+1,并设置2秒过期
redis.call("INCRBY", key,"1")
if tonumber(ARGV[2]) > -1 then
redis.call("expire", key,tonumber(ARGV[2])) --时间窗口最大时间后销毁键
end
return 1
end
lua脚本返回值比较奇怪,用java客户端接受返回值,只能使用Long,没有去深究。这个脚本只需要传入key(url+时间戳/预设时间窗口大小),便可以实现限流。
这里也贴下java中配套的工具类
package sinosoftgz.apiGateway.utils;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.data.redis.core.script.RedisScript;
import org.springframework.util.Assert;
import java.util.Arrays;
/**
* Created by xujingfeng on 2017/3/13.
* <p>
* 基于redis lua脚本的线程安全的计数器限流方案
* </p>
*/
public class RedisRateLimiter {
/**
* 限流访问的url
*/
private String url;
/**
* 单位时间的大小,最大值为 Long.MAX_VALUE - 1,以秒为单位
*/
final Long timeUnit;
/**
* 单位时间窗口内允许的访问次数
*/
final Integer limit;
/**
* 需要传入一个lua script,莫名其妙redisTemplate返回值永远是个Long
*/
private RedisScript<Long> redisScript;
private RedisTemplate redisTemplate;
/**
* 配置键是否会过期,
* true:可以用来做接口流量统计,用定时器去删除
* false:过期自动删除,时间窗口过小的话会导致键过多
*/
private boolean isDurable = false;
public void setRedisScript(RedisScript<Long> redisScript) {
this.redisScript = redisScript;
}
public void setRedisTemplate(RedisTemplate redisTemplate) {
this.redisTemplate = redisTemplate;
}
public String getUrl() {
return url;
}
public void setUrl(String url) {
this.url = url;
}
public boolean isDurable() {
return isDurable;
}
public void setDurable(boolean durable) {
isDurable = durable;
}
public RedisRateLimiter(Integer limit, Long timeUnit) {
this.timeUnit = timeUnit;
Assert.isTrue(timeUnit < Long.MAX_VALUE - 1);
this.limit = limit;
}
public RedisRateLimiter(Integer limit, Long timeUnit, boolean isDurable) {
this(limit, timeUnit);
this.isDurable = isDurable;
}
public boolean acquire() {
return this.acquire(this.url);
}
public boolean acquire(String url) {
StringBuffer key = new StringBuffer();
key.append("rateLimiter").append(":")
.append(url).append(":")
.append(System.currentTimeMillis() / 1000 / timeUnit);
Integer expire = limit + 1;
String convertExpire = isDurable ? "-1" : expire.toString();
return redisTemplate.execute(redisScript, Arrays.asList(key.toString()), limit.toString(), convertExpire).equals(1l);
}
}
由此可以见,分布式场景下,一个小小的统计次数的需求,如果真想在分布式下做到最完善,需要花很大的精力。
更多推荐
所有评论(0)