LVQ(Learning Vector Quantization)神经网络是一种用于训练竞争的有监督学习方法的输入向前神经网络,其算法是从Kohonen竞争算法演化而来的。LVQ神经网络在模式识别和优化领域有着广泛的应用。

LVQ神经网络由三层神经元组成,即输入层、竞争层和线性输出层。如下图所示:

 

 

        输入层与竞争层之间采用全连接的方式,竞争层与线性输出层之间采用部分连接的方式。竞争层神经元个数总是大于线性输出层神经元个数,每个竞争层神经元只与一个线性输出层神经元相连接且连接权值恒为1.但是每个线性输出层神经元可以与多个竞争层神经元相连接。竞争层神经元与线性输出层神经元只能是1或0。当某个输入模式被送至网络时,与输入模式距离最近的竞争层神经元被激活,神经元的状态为“1”,而其他竞争层神经元的状态均为“0”。因此,与被激活神经元相连接的线性输出层神经元状态也为“1”,而其他线性输出层神经元的状态均为“0”。

margin-left:11.5833px;margin-top:12.5000px;width:79.0000px;height:40.0000px;" > 

Logo

CSDN联合极客时间,共同打造面向开发者的精品内容学习社区,助力成长!

更多推荐