Linux系统下/proc/meminfo详解
/proc/meminfo Explained"Free," "buffer," "swap," "dirty." What does it all mean? If you said, "something to do with the Summer of '68", you may need a primer on 'meminfo'.T
/proc/meminfo Explained
"
Free," "buffer," "swap," "dirty." What does it all mean?
If you said, "something to do with the Summer of '68", you may need a primer on 'meminfo'.
The entries in the /proc/meminfo can help explain what's going on with your memory usage,
if you know how to read it.
Example of "cat /proc/meminfo":
root: total: used: free: shared: buffers: cached: Mem: 1055760384 1041887232 13873152 0 100417536 711233536 Swap: 1077501952 8540160 1068961792
MemTotal: 1031016 kB MemFree: 13548 kB MemShared: 0 kB Buffers: 98064 kB Cached: 692320 kB SwapCached: 2244 kB Active: 563112 kB Inact_dirty: 309584 kB Inact_clean: 79508 kB Inact_target: 190440 kB HighTotal: 130992 kB HighFree: 1876 kB LowTotal: 900024 kB LowFree: 11672 kB SwapTotal: 1052248 kB SwapFree: 1043908 kB Committed_AS: 332340 kB
The information comes in the form of both high-level and low-level statistics. At the top you see a quick summary of the most common values people would like to look at. Below you find the individual values we will discuss. First we will discuss the high-level statistics.
High-Level Statistics
- MemTotal: Total usable ram (i.e. physical ram minus a few reserved bits and the kernel binary code)
- MemFree: Is sum of LowFree+HighFree (overall stat)
- MemShared: 0; is here for compat reasons but always zero.
- Buffers: Memory in buffer cache. mostly useless as metric nowadays
- Cached: Memory in the pagecache (diskcache) minus SwapCache
- SwapCache: Memory that once was swapped out, is swapped back in but still also is in the swapfile (if memory is needed it doesn't need to be swapped out AGAIN because it is already in the swapfile. This saves I/O)
Detailed Level Statistics
VM Statistics
VM splits the cache pages into "active" and "inactive" memory. The idea is that if you need memory and some cache needs to be sacrificed for that, you take it from inactive since that's expected to be not used. The vm checks what is used on a regular basis and moves stuff around.
When you use memory, the CPU sets a bit in the pagetable and the VM checks that bit occasionally, and based on that, it can move pages back to active. And within active there's an order of "longest ago not used" (roughly, it's a little more complex in reality). The longest-ago used ones can get moved to inactive. Inactive is split into two in the above kernel (2.4.18-24.8.0). Some have it three.
- Active: Memory that has been used more recently and usually not reclaimed unless absolutely necessary.
- Inact_dirty: Dirty means "might need writing to disk or swap." Takes more work to free. Examples might be files that have not been written to yet. They aren't written to memory too soon in order to keep the I/O down. For instance, if you're writing logs, it might be better to wait until you have a complete log ready before sending it to disk.
- Inact_clean: Assumed to be easily freeable. The kernel will try to keep some clean stuff around always to have a bit of breathing room.
- Inact_target: Just a goal metric the kernel uses for making sure there are enough inactive pages around. When exceeded, the kernel will not do work to move pages from active to inactive. A page can also get inactive in a few other ways, e.g. if you do a long sequential I/O, the kernel assumes you're not going to use that memory and makes it inactive preventively. So you can get more inactive pages than the target because the kernel marks some cache as "more likely to be never used" and lets it cheat in the "last used" order.
Memory Statistics
- HighTotal: is the total amount of memory in the high region. Highmem is all memory above (approx) 860MB of physical RAM. Kernel uses indirect tricks to access the high memory region. Data cache can go in this memory region.
- LowTotal: The total amount of non-highmem memory.
- LowFree: The amount of free memory of the low memory region. This is the memory the kernel can address directly. All kernel datastructures need to go into low memory.
- SwapTotal: Total amount of physical swap memory.
- SwapFree: Total amount of swap memory free.
- Committed_AS: An estimate of how much RAM you would need to make a 99.99% guarantee that there never is OOM (out of memory) for this workload. Normally the kernel will overcommit memory. That means, say you do a 1GB malloc, nothing happens, really. Only when you start USING that malloc memory you will get real memory on demand, and just as much as you use. So you sort of take a mortgage and hope the bank doesn't go bust. Other cases might include when you mmap a file that's shared only when you write to it and you get a private copy of that data. While it normally is shared between processes. The Committed_AS is a guesstimate of how much RAM/swap you would need worst-case.
在Linux下查看内存我们一般用free命令:
[root@scs-2 tmp]# free
total used free shared buffers cached
Mem: 3266180 3250004 16176 0 110652 2668236
-/+ buffers/cache: 471116 2795064
Swap: 2048276 80160 1968116
下面是对这些数值的解释:
total:总计物理内存的大小。
used:已使用多大。
free:可用有多少。
Shared:多个进程共享的内存总额。
Buffers/cached:磁盘缓存的大小。
第三行(-/+ buffers/cached):
used:已使用多大。
free:可用有多少
。
第四行就不多解释了。
区别:第二行(mem)的used/free与第三行(-/+ buffers/cache) used/free的区别。
这两个的区别在于使用的角度来看,第一行是从OS的角度来看,因为对于OS,buffers/cached 都是属于被使用,
所以他的可用内存是16176KB,已用内存是3250004KB,其中包括,内核(OS)使用+Application(X, oracle,etc)使用的+buffers+cached.
第三行所指的是从应用程序角度来看,对于应用程序来说,buffers/cached 是等于可用的,
因为buffer/cached是为了提高文件读取的性能,当应用程序需在用到内存的时候,buffer/cached会很快地被回收。
所以从应用程序的角度来说,可用内存=系统free memory+buffers+cached。
如上例:
2795064=16176+110652+2668236
接下来解释什么时候内存会被交换,以及按什么方交换。 当可用内存少于额定值的时候,就会开会进行交换。
如何看额定值:
cat /proc/meminfo
[root@scs-2 tmp]# cat /proc/meminfo
MemTotal: 3266180 kB
MemFree: 17456 kB
Buffers: 111328 kB
Cached: 2664024 kB
SwapCached: 0 kB
Active: 467236 kB
Inactive: 2644928 kB
HighTotal: 0 kB
HighFree: 0 kB
LowTotal: 3266180 kB
LowFree: 17456 kB
SwapTotal: 2048276 kB
SwapFree: 1968116 kB
Dirty: 8 kB
Writeback: 0 kB
Mapped: 345360 kB
Slab: 112344 kB
Committed_AS: 535292 kB
PageTables: 2340 kB
VmallocTotal: 536870911 kB
VmallocUsed: 272696 kB
VmallocChunk: 536598175 kB
HugePages_Total: 0
HugePages_Free: 0
Hugepagesize: 2048 kB
用free -m查看的结果:
[root@scs-2 tmp]# free -m
total used free shared buffers cached
Mem: 3189 3173 16 0 107 2605
-/+ buffers/cache: 460 2729
Swap: 2000 78 1921
查看/proc/kcore文件的大小(内存镜像):
[root@scs-2 tmp]# ll -h /proc/kcore
-r-------- 1 root root 4.1G Jun 12 12:04 /proc/kcore
备注:
占用内存的测量
测量一个进程占用了多少内存,linux为我们提供了一个很方便的方法,/proc目录为我们提供了所有的信息,实际上top等工具也通过这里来获取相应的信息。
/proc/meminfo 机器的内存使用信息
/proc/pid/maps pid为进程号,显示当前进程所占用的虚拟地址。
/proc/pid/statm 进程所占用的内存
[root@localhost ~]# cat /proc/self/statm
654 57 44 0 0 334 0
输出解释
CPU 以及CPU0。。。的每行的每个参数意思(以第一行为例)为:
参数 解释 /proc//status
Size (pages) 任务虚拟地址空间的大小 VmSize/4
Resident(pages) 应用程序正在使用的物理内存的大小 VmRSS/4
Shared(pages) 共享页数 0
Trs(pages) 程序所拥有的可执行虚拟内存的大小 VmExe/4
Lrs(pages) 被映像到任务的虚拟内存空间的库的大小 VmLib/4
Drs(pages) 程序数据段和用户态的栈的大小 (VmData+ VmStk )4
dt(pages) 04
查看机器可用内存
free
total used free shared buffers cached
Mem: 1023788 926400 97388 0 134668 503688
-/+ buffers/cache: 288044 735744
Swap: 1959920 89608 1870312
我们通过free命令查看机器空闲内存时,会发现free的值很小。这主要是因为,在linux中有这么一种思想,内存不用白不用,因此它尽可能的cache和buffer一些数据,以方便下次使用。但实际上这些内存也是可以立刻拿来使用的。
所以 空闲内存=free+buffers+cached=total-used
above original link: http://bbs.cisco-club.com.cn/blog-21461-1502.html
关于Linux的缓存内存 Cache Memory详解
PS:前天有童鞋问我,为啥我的Linux系统没运行多少程序,显示的可用内存这么少?
其实Linux与Win的内存管理不同,会尽量缓存内存以提高读写性能,通常叫做Cache Memory。
有时候你会发现没有什么程序在运行,但是使用top或free命令看到可用内存free项会很少,此时查看系统的 /proc/meminfo 文件,会发现有一项 Cached Memory:
输入cat /proc/meminfo查看:
MemTotal: 16425996 kB
MemFree: 5698808 kB
Buffers: 380904 kB
Cached: 9389356 kB
SwapCached: 212 kB
Active: 6569200 kB
Inactive: 3725364 kB
HighTotal: 0 kB
HighFree: 0 kB
LowTotal: 16425996 kB
LowFree: 5698808 kB
SwapTotal: 8273464 kB
SwapFree: 8273252 kB
Dirty: 980 kB
Writeback: 0 kB
AnonPages: 524108 kB
Mapped: 24568 kB
Slab: 381776 kB
PageTables: 7496 kB
NFS_Unstable: 0 kB
Bounce: 0 kB
CommitLimit: 16486460 kB
Committed_AS: 2143856 kB
VmallocTotal: 34359738367 kB
VmallocUsed: 267656 kB
VmallocChunk: 34359469303 kB
HugePages_Total: 0
HugePages_Free: 0
HugePages_Rsvd: 0
Hugepagesize: 2048 kB
free命令里各项内存指标说明:
total used free shared buffers cached
Mem: 16425996 10727220 5698776 0 380904 9389832
-/+ buffers/cache: 956484 15469512
Swap: 8273464 212 8273252
其中第一行用全局角度描述系统使用的内存状况:
total——总物理内存
used——已使用内存,一般情况这个值会比较大,因为这个值包括了cache+应用程序使用的内存
free——完全未被使用的内存
shared——应用程序共享内存
buffers——缓存,主要用于目录方面,inode值等(ls大目录可看到这个值增加)
cached——缓存,用于已打开的文件
总结:
total=used+free
used=buffers+cached (maybe add shared also)
第二行描述应用程序的内存使用:
前个值表示-buffers/cache——应用程序使用的内存大小,used减去缓存值
后个值表示+buffers/cache——所有可供应用程序使用的内存大小,free加上缓存值
总结:
-buffers/cache=used-buffers-cached
+buffers/cache=free+buffers+cached
第三行表示swap的使用:
used——已使用
free——未使用
什么是Cache Memory(缓存内存):
当你读写文件的时候,Linux内核为了提高读写性能与速度,会将文件在内存中进行缓存,这部分内存就是Cache Memory(缓存内存)。即使你的程序运行结束后,Cache Memory也不会自动释放。这就会导致你在Linux系统中程序频繁读写文件后,你会发现可用物理内存会很少。
其实这缓存内存(Cache Memory)在你需要使用内存的时候会自动释放,所以你不必担心没有内存可用。如果你希望手动去释放Cache Memory也是有办法的。
如何释放Cache Memory(缓存内存):
用下面的命令可以释放Cache Memory:
To free pagecache:
echo 1 > /proc/sys/vm/drop_caches
To free dentries and inodes:
echo 2 > /proc/sys/vm/drop_caches
To free pagecache, dentries and inodes:
echo 3 > /proc/sys/vm/drop_caches
注意,释放前最好sync一下,防止丢失数据。
总结:个人经验认为没必要手动释放,这种内存管理方式也是比win优胜的地方之一!因为Linux的内核内存管理机制,一般情况下不需要特意去释放已经使用的cache。这些cache起来的内容可以提高文件以及磁盘的读写速度。
above original link: http://www.ha97.com/4337.html
主要参考内核文档和红帽文档对
> cat /proc/meminfo 读出的内核信息进行解释,
下篇文章会简单对读出该信息的代码进行简单的分析。
|
相应选项中文意思想各位高手已经知道,如果翻译有什么错误,请务必指出:
MemTotal: 所有可用RAM大小 (即物理内存减去一些预留位和内核的二进制代码大小)
MemFree: LowFree与HighFree的总和,被系统留着未使用的内存
Buffers: 用来给文件做缓冲大小
Cached: 被高速缓冲存储器(cache memory)用的内存的大小(等于 diskcache minus SwapCache ).
SwapCached:被高速缓冲存储器(cache memory)用的交换空间的大小已经
被交换出来的内存,但仍然被存放在swapfile中。用来在需要的时候很快的
被替换而不需要再次打开I/O端口。
Active: 在活跃使用中的缓冲或高速缓冲存储器页面文件的大小,除非非常必要否则不会被移作他用.
Inactive: 在不经常使用中的缓冲或高速缓冲存储器页面文件的大小,可能被用于 其他 途径.
HighTotal:
HighFree: 该区域不是直接映射到内核空间。内核必须使用不同的手法使用该段内存。
LowTotal:
LowFree: 低位可以达到高位内存一样的作用,而且它还能够被内核用来记录
一些自己的数据结构。Among many other things, it is where
everything from the Slab is allocated. Bad things happen
when you're out of lowmem.
SwapTotal: 交换空间的总大小
SwapFree: 未被使用交换空间的大小
Dirty: 等待被写回到磁盘的内存大小。
Writeback: 正在被写回到磁盘的内存大小。
AnonPages:未映射页的内存大小
Mapped: 设备和文件等映射的大小。
Slab: 内核数据结构缓存的大小,可以减少申请和释放内存带来的消耗。
SReclaimable:可收回Slab的大小
SUnreclaim:不可收回Slab的大小(SUnreclaim+SReclaimable=Slab)
PageTables:管理内存分页页面的索引表的大小。
NFS_Unstable:不稳定页表的大小
Bounce:
CommitLimit: Based on the overcommit ratio('vm.overcommit_ratio'),
this is the total amount of memory currently available to
be allocated on the system. This limit is only adhered to
if strict overcommit accounting is enabled (mode 2 in
'vm.overcommit_memory').
The CommitLimit is calculated with the following formula:
CommitLimit = ('vm.overcommit_ratio' * Physical RAM) + Swap
For example, on a system with 1G of physical RAM and 7G
of swap with a `vm.overcommit_ratio` of 30 it would
yield a CommitLimit of 7.3G.
For more details, see the memory overcommit documentation
in vm/overcommit-accounting.
Committed_AS: The amount of memory presently allocated on
the system.
The committed memory is a sum of all of the memory which
has been allocated by processes, even if it has not been
"used" by them as of yet. A process which malloc()'s 1G
of memory, but only touches 300M of it will only show up
as using 300M of memory even if it has the address space
allocated for the entire 1G. This 1G is memory which has
been "committed" to by the VM and can be used at any time
by the allocating application. With strict overcommit
enabled on the system (mode 2 in 'vm.overcommit_memory'),
allocations which would exceed the CommitLimit (detailed
above) will not be permitted. This is useful if one needs
to guarantee that processes will not fail due to lack of
memory once that memory has been successfully allocated.
VmallocTotal: 可以vmalloc虚拟内存大小
VmallocUsed: 已经被使用的虚拟内存大小。
VmallocChunk: largest contigious block of vmalloc area which is free
下面简单来个例子,看看已用内存和物理内存大小..
|
VMSTAT介绍
通过STATSPACK收集服务器信息,主要通过收集VMSTAT的信息来展现服务器状况。VMSTAT工具是最常见的UNIX监控工具,可以展现给定时间间隔的服务器的状态值。
一般VMSTAT工具的使用是通过两个数字参数来完成的,第一个参数是采样的时间间隔数,单位是秒,第二个参数是采样的次数。如:
[oracle@brucelau oracle]$ vmstat 1 2
procs memory swap io system CPU
r b w swpd free buff cache si so bi bo in cs us sy id
1 0 0 0 271844 186052 255852 0 0 2 6 102 10 0 0 100
0 0 0 0 271844 186052 255852 0 0 0 0 104 11 0 0 100
(注:目前系统几乎空闲,并且不同操作系统VMSTAT输出内容有所不同)
目前说来,对于服务器监控有用处的度量主要有:
r(运行队列)
pi(页导入)
us(用户CPU)
sy(系统CPU)
id(空闲)
通过VMSTAT识别CPU瓶颈
r(运行队列)展示了正在执行和等待CPU资源的任务个数。当这个值超过了CPU数目,就会出现CPU瓶颈了。
获得CPU个数的命令(LINUX环境):
cat /proc/cpuinfo|grep processor|wc –l
当r值超过了CPU个数,就会出现CPU瓶颈,解决办法大体几种:
1. 最简单的就是增加CPU个数
2. 通过调整任务执行时间,如大任务放到系统不繁忙的情况下进行执行,进尔平衡系统任务
3. 调整已有任务的优先级
通过VMSTAT识别CPU满负荷
首先需要声明一点的是,vmstat中CPU的度量是百分比的。当us+sy的值接近100的时候,表示CPU正在接近满负荷工作。但要注意的是,CPU 满负荷工作并不能说明什么,UNIX总是试图要CPU尽可能的繁忙,使得任务的吞吐量最大化。唯一能够确定CPU瓶颈的还是r(运行队列)的值。
通过VMSTAT识别RAM瓶颈
数据库服务器都只有有限的RAM,出现内存争用现象是Oracle的常见问题。
首先察看RAM的数量,命令如下(LINUX环境):
[root@brucelau root]#free
total used free shared buffers cached
Mem: 1027348 873312 154036 185736 187496 293964
-/+ buffers/cache: 391852 635496
Swap: 2096440 0 2096440
当然可以使用top等其他命令来显示RAM。
当内存的需求大于RAM的数量,服务器启动了虚拟内存机制,通过虚拟内存,可以将RAM段移到SWAP DISK的特殊磁盘段上,这样会出现虚拟内存的页导出和页导入现象,页导出并不能说明RAM瓶颈,虚拟内存系统经常会对内存段进行页导出,但页导入操作就 表明了服务器需要更多的内存了,页导入需要从SWAP DISK上将内存段复制回RAM,导致服务器速度变慢。
解决的办法有几种:
1. 最简单的,加大RAM
2. 改小SGA,使得对RAM需求减少
3. 减少RAM的需求(如:减少PGA)
我们基本的了解了VMSTAT工作,下面是STATSPACK通过vmstat统计收集服务器性能数据。
STATSPACK通过vmstat收集服务器信息
首先在perfstat用户下建一个存储服务器信息的表:如
建表:
create table stats$vmstat
(
start_date date, --系统时间
duration date, --时间间隔
server_name varchar2(20), --服务器名称
runque_waits number, --运行队列数据
page_in number, --页导入数据
page_out number, --页导出数据
user_cpu number, --用户cpu数据
system_cpu number, --系统cpu数据
idle_cpu number, --空闲cpu数据
wait_cpu number –等待cpu数据(只是aix存在)
)
tablespace perfstat;
然后,通过UNIX/LINUX的shell变成,利用vmstat的结果来获取相应的服务器信息,并且存放到表中
original above link: http://www.51testing.com/html/87/43487-204904.html
更多推荐
所有评论(0)