linux gpio模拟i2c的使用/用GPIO模拟I2C总线-3
这个结构专门用于数据传输相关的addr为I2C设备地址,flags为一些标志位,len为数据的长度,buf为数据。这里宏定义的一些标志还是需要了解一下。I2C_M_TEN表示10位设备地址I2C_M_RD读标志I2C_M_NOSTART无起始信号标志I2C_M_IGNORE_NAK忽略应答信号标志回到for,这里的num代表有几个structi2c_msg,进入for语句
这个结构专门用于数据传输相关的addr为I2C设备地址,flags为一些标志位,len为数据的长度,buf为数据。这里宏定义的一些标志还是需要了解一下。
I2C_M_TEN表示10位设备地址
I2C_M_RD读标志
I2C_M_NOSTART无起始信号标志
I2C_M_IGNORE_NAK忽略应答信号标志
回到for,这里的num代表有几个struct i2c_msg,进入for语句,接下来是个if语句,判断这个设备是否定义了I2C_M_NOSTART标志,这个标志主要用于写操作时,不必重新发送起始信号和设备地址,但是对于读操作就不同了,要调用i2c_repstart这个函数去重新发送起始信号,调用bit_doAddress函数去重新构造设备地址字节,来看这个函数。
- static int bit_doAddress(struct i2c_adapter *i2c_adap, struct i2c_msg *msg)
- {
- unsigned short flags = msg->flags;
- unsigned short nak_ok = msg->flags & I2C_M_IGNORE_NAK;
- struct i2c_algo_bit_data *adap = i2c_adap->algo_data;
- unsigned char addr;
- int ret, retries;
- retries = nak_ok ? 0 : i2c_adap->retries;
- if (flags & I2C_M_TEN) {
- /* a ten bit address */
- addr = 0xf0 | ((msg->addr >> 7) & 0x03);
- bit_dbg(2, &i2c_adap->dev, "addr0: %d\n", addr);
- /* try extended address code...*/
- ret = try_address(i2c_adap, addr, retries);
- if ((ret != 1) && !nak_ok) {
- dev_err(&i2c_adap->dev,
- "died at extended address code\n");
- return -EREMOTEIO;
- }
- /* the remaining 8 bit address */
- ret = i2c_outb(i2c_adap, msg->addr & 0x7f);
- if ((ret != 1) && !nak_ok) {
- /* the chip did not ack / xmission error occurred */
- dev_err(&i2c_adap->dev, "died at 2nd address code\n");
- return -EREMOTEIO;
- }
- if (flags & I2C_M_RD) {
- bit_dbg(3, &i2c_adap->dev, "emitting repeated "
- "start condition\n");
- i2c_repstart(adap);
- /* okay, now switch into reading mode */
- addr |= 0x01;
- ret = try_address(i2c_adap, addr, retries);
- if ((ret != 1) && !nak_ok) {
- dev_err(&i2c_adap->dev,
- "died at repeated address code\n");
- return -EREMOTEIO;
- }
- }
- } else { /* normal 7bit address */
- addr = msg->addr << 1;
- if (flags & I2C_M_RD)
- addr |= 1;
- if (flags & I2C_M_REV_DIR_ADDR)
- addr ^= 1;
- ret = try_address(i2c_adap, addr, retries);
- if ((ret != 1) && !nak_ok)
- return -ENXIO;
- }
- return 0;
- }
- 1. static int try_address(struct i2c_adapter *i2c_adap,
- 2. unsigned char addr, int retries)
- 3. {
- 4. struct i2c_algo_bit_data *adap = i2c_adap->algo_data;
- 5. int i, ret = 0;
- 6.
- 7. for (i = 0; i <= retries; i++) {
- 8. ret = i2c_outb(i2c_adap, addr);
- 9. if (ret == 1 || i == retries)
- 10. break;
- 11. bit_dbg(3, &i2c_adap->dev, "emitting stop condition\n");
- 12. i2c_stop(adap);
- 13. udelay(adap->udelay);
- 14. yield();
- 15. bit_dbg(3, &i2c_adap->dev, "emitting start condition\n");
- 16. i2c_start(adap);
- 17. }
- 18. if (i && ret)
- 19. bit_dbg(1, &i2c_adap->dev, "Used %d tries to %s client at "
- 20. "0x%02x: %s\n", i + 1,
- 21. addr & 1 ? "read from" : "write to", addr >> 1,
- 22. ret == 1 ? "success" : "failed, timeout?");
- 23. return ret;
- 24. }
最主要的就是调用i2c_outb发送一个字节,retries为重复次数,看前面adap->retries= 3;
如果发送失败,也就是设备没有给出应答信号,那就发送停止信号,发送起始信号,再发送这个地址字节,这就叫retries。来看这个具体的i2c_outb函数
- 1. static int i2c_outb(struct i2c_adapter *i2c_adap, unsigned char c)
- 2. {
- 3. int i;
- 4. int sb;
- 5. int ack;
- 6. struct i2c_algo_bit_data *adap = i2c_adap->algo_data;
- 7.
- 8. /* assert: scl is low */
- 9. for (i = 7; i >= 0; i--) {
- 10. sb = (c >> i) & 1;
- 11. setsda(adap, sb);
- 12. udelay((adap->udelay + 1) / 2);
- 13. if (sclhi(adap) < 0) { /* timed out */
- 14. bit_dbg(1, &i2c_adap->dev, "i2c_outb: 0x%02x, "
- 15. "timeout at bit #%d\n", (int)c, i);
- 16. return -ETIMEDOUT;
- 17. }
- 18. /* FIXME do arbitration here:
- 19. * if (sb && !getsda(adap)) -> ouch! Get out of here.
- 20. *
- 21. * Report a unique code, so higher level code can retry
- 22. * the whole (combined) message and *NOT* issue STOP.
- 23. */
- 24. scllo(adap);
- 25. }
- 26. sdahi(adap);
- 27. if (sclhi(adap) < 0) { /* timeout */
- 28. bit_dbg(1, &i2c_adap->dev, "i2c_outb: 0x%02x, "
- 29. "timeout at ack\n", (int)c);
- 30. return -ETIMEDOUT;
- 31. }
- 32.
- 33. /* read ack: SDA should be pulled down by slave, or it may
- 34. * NAK (usually to report problems with the data we wrote).
- 35. */
- 36. ack = !getsda(adap); /* ack: sda is pulled low -> success */
- 37. bit_dbg(2, &i2c_adap->dev, "i2c_outb: 0x%02x %s\n", (int)c,
- 38. ack ? "A" : "NA");
- 39.
- 40. scllo(adap);
- 41. return ack;
- 42. /* assert: scl is low (sda undef) */
- 43. }
这个函数有两个参数,一个是structi2c_adapter代表I2C主机,一个是发送的字节数据。那么I2C是怎样将一个字节数据发送出去的呢,那再来看看协议。
首先是发送字节数据的最高位,在时钟为高电平期间将一位数据发送出去,最后是发送字节数据的最低位。发送完成之后,我们需要一个ACK信号,要不然我怎么知道发送成功没有,ACK信号就是在第九个时钟周期时数据线为低,所以在一个字节数据传送完成后,还要将数据线拉高,我们看程序中就是这一句sdahi(adap);等待这个ACK信号的到来,这样一个字节数据就发送完成。
回到bit_xfer函数中,前面只是将设备地址字节发送出去了,那么接下来就是该发送数据了。
注意:这里的数据包括操作设备的基地址
如果是读则调用readbytes函数去读,如果是写则调用sendbytes去写,先看readbytes函数
- 1. static int readbytes(struct i2c_adapter *i2c_adap, struct i2c_msg *msg)
- 2. {
- 3. int inval;
- 4. int rdcount = 0; /* counts bytes read */
- 5. unsigned char *temp = msg->buf;
- 6. int count = msg->len;
- 7. const unsigned flags = msg->flags;
- 8.
- 9. while (count > 0) {
- 10. inval = i2c_inb(i2c_adap);
- 11. if (inval >= 0) {
- 12. *temp = inval;
- 13. rdcount++;
- 14. } else { /* read timed out */
- 15. break;
- 16. }
- 17.
- 18. temp++;
- 19. count--;
- 20.
- 21. /* Some SMBus transactions require that we receive the
- 22. transaction length as the first read byte. */
- 23. if (rdcount == 1 && (flags & I2C_M_RECV_LEN)) {
- 24. if (inval <= 0 || inval > I2C_SMBUS_BLOCK_MAX) {
- 25. if (!(flags & I2C_M_NO_RD_ACK))
- 26. acknak(i2c_adap, 0);
- 27. dev_err(&i2c_adap->dev, "readbytes: invalid "
- 28. "block length (%d)\n", inval);
- 29. return -EREMOTEIO;
- 30. }
- 31. /* The original count value accounts for the extra
- 32. bytes, that is, either 1 for a regular transaction,
- 33. or 2 for a PEC transaction. */
- 34. count += inval;
- 35. msg->len += inval;
- 36. }
- 37.
- 38. bit_dbg(2, &i2c_adap->dev, "readbytes: 0x%02x %s\n",
- 39. inval,
- 40. (flags & I2C_M_NO_RD_ACK)
- 41. ? "(no ack/nak)"
- 42. : (count ? "A" : "NA"));
- 43.
- 44. if (!(flags & I2C_M_NO_RD_ACK)) {
- 45. inval = acknak(i2c_adap, count);
- 46. if (inval < 0)
- 47. return inval;
- 48. }
- 49. }
- 50. return rdcount;
- 51. }
其中一个大的while循环,调用i2c_inb去读一个字节,count为数据的长度,单位为多少个字节,
那就来看i2c_inb函数。
- static int i2c_inb(struct i2c_adapter *i2c_adap)
- {
- /* read byte via i2c port, without start/stop sequence */
- /* acknowledge is sent in i2c_read. */
- int i;
- unsigned char indata = 0;
- struct i2c_algo_bit_data *adap = i2c_adap->algo_data;
- /* assert: scl is low */
- sdahi(adap);
- for (i = 0; i < 8; i++) {
- if (sclhi(adap) < 0) { /* timeout */
- bit_dbg(1, &i2c_adap->dev, "i2c_inb: timeout at bit "
- "#%d\n", 7 - i);
- return -ETIMEDOUT;
- }
- indata *= 2;
- if (getsda(adap))
- indata |= 0x01;
- setscl(adap, 0);
- udelay(i == 7 ? adap->udelay / 2 : adap->udelay);
- }
- /* assert: scl is low */
- return indata;
- }
- 1. static int sendbytes(struct i2c_adapter *i2c_adap, struct i2c_msg *msg)
- 2. {
- 3. const unsigned char *temp = msg->buf;
- 4. int count = msg->len;
- 5. unsigned short nak_ok = msg->flags & I2C_M_IGNORE_NAK;
- 6. int retval;
- 7. int wrcount = 0;
- 8.
- 9. while (count > 0) {
- 10. retval = i2c_outb(i2c_adap, *temp);
- 11.
- 12. /* OK/ACK; or ignored NAK */
- 13. if ((retval > 0) || (nak_ok && (retval == 0))) {
- 14. count--;
- 15. temp++;
- 16. wrcount++;
- 17.
- 18. /* A slave NAKing the master means the slave didn't like
- 19. * something about the data it saw. For example, maybe
- 20. * the SMBus PEC was wrong.
- 21. */
- 22. } else if (retval == 0) {
- 23. dev_err(&i2c_adap->dev, "sendbytes: NAK bailout.\n");
- 24. return -EIO;
- 25.
- 26. /* Timeout; or (someday) lost arbitration
- 27. *
- 28. * FIXME Lost ARB implies retrying the transaction from
- 29. * the first message, after the "winning" master issues
- 30. * its STOP. As a rule, upper layer code has no reason
- 31. * to know or care about this ... it is *NOT* an error.
- 32. */
- 33. } else {
- 34. dev_err(&i2c_adap->dev, "sendbytes: error %d\n",
- 35. retval);
- 36. return retval;
- 37. }
- 38. }
- 39. return wrcount;
- 40. }
也是一个大的while循环,同发送地址字节一样,也是调用i2c_outb去发送一个字节,count也是数据长度,由于i2c_outb函数在前面发送设备地址那里已经介绍了,这里也就不贴出来了。
还是回到bit_xfer函数,数据传输完成后,调用i2c_stop函数发送停止信号。我们看停止信号函数怎么去实现的。
- 1. static void i2c_stop(struct i2c_algo_bit_data *adap)
- 2. {
- 3. /* assert: scl is low */
- 4. sdalo(adap);
- 5. sclhi(adap);
- 6. setsda(adap, 1);
- 7. udelay(adap->udelay);
- 8. }
看前面发送起始信号的那张图,停止信号就是在时钟为高电平期间,数据线从低到高的跳变。我们看程序是先将数据线拉低,将时钟线拉高,最后将数据拉高,这样就够成了一个停止信号。
还是回到i2c_bit_add_numbered_bus这个函数中来,看另外一个函数调用i2c_add_numbered_adapter。
- 1. int i2c_add_numbered_adapter(struct i2c_adapter *adap)
- 2. {
- 3. int id;
- 4. int status;
- 5.
- 6. if (adap->nr & ~MAX_ID_MASK)
- 7. return -EINVAL;
- 8.
- 9. retry:
- 10. if (idr_pre_get(&i2c_adapter_idr, GFP_KERNEL) == 0)
- 11. return -ENOMEM;
- 12.
- 13. mutex_lock(&core_lock);
- 14. /* "above" here means "above or equal to", sigh;
- 15. * we need the "equal to" result to force the result
- 16. */
- 17. status = idr_get_new_above(&i2c_adapter_idr, adap, adap->nr, &id);
- 18. if (status == 0 && id != adap->nr) {
- 19. status = -EBUSY;
- 20. idr_remove(&i2c_adapter_idr, id);
- 21. }
- 22. mutex_unlock(&core_lock);
- 23. if (status == -EAGAIN)
- 24. goto retry;
- 25.
- 26. if (status == 0)
- 27. status = i2c_register_adapter(adap);
- 28. return status;
- 29. }
- static int i2c_register_adapter(struct i2c_adapter *adap)
- {
- int res = 0, dummy;
- /* Can't register until after driver model init */
- if (unlikely(WARN_ON(!i2c_bus_type.p))) {
- res = -EAGAIN;
- goto out_list;
- }
- mutex_init(&adap->bus_lock);
- /* Set default timeout to 1 second if not already set */
- if (adap->timeout == 0)
- adap->timeout = HZ;
- dev_set_name(&adap->dev, "i2c-%d", adap->nr);
- adap->dev.bus = &i2c_bus_type;
- adap->dev.type = &i2c_adapter_type;
- res = device_register(&adap->dev);
- if (res)
- goto out_list;
- dev_dbg(&adap->dev, "adapter [%s] registered\n", adap->name);
- #ifdef CONFIG_I2C_COMPAT
- res = class_compat_create_link(i2c_adapter_compat_class, &adap->dev,
- adap->dev.parent);
- if (res)
- dev_warn(&adap->dev,
- "Failed to create compatibility class link\n");
- #endif
- /* create pre-declared device nodes */
- if (adap->nr < __i2c_first_dynamic_bus_num)
- i2c_scan_static_board_info(adap);
- /* Notify drivers */
- mutex_lock(&core_lock);
- dummy = bus_for_each_drv(&i2c_bus_type, NULL, adap,
- i2c_do_add_adapter);
- mutex_unlock(&core_lock);
- return 0;
- out_list:
- mutex_lock(&core_lock);
- idr_remove(&i2c_adapter_idr, adap->nr);
- mutex_unlock(&core_lock);
- return res;
- }
看内核代码有时就会这样,会陷入内核代码的汪洋大海中,而拔不出来,直接后果是最后都忘记看这段代码的目的,丧失继续看下去的信心。所以为了避免这样情况出现,所以最好在开始看代码的时候要明确目标,我通过这段代码到底要了解什么东西,主干要抓住,其它枝叶就不要看了。
在这里我认为主要的有
1.注册这个I2C总线设备
- 1. adap->dev.bus = &i2c_bus_type;
- 2. adap->dev.type = &i2c_adapter_type;
- 3. res = device_register(&adap->dev);
- 1. struct bus_type i2c_bus_type = {
- 2. .name = "i2c",
- 3. .match = i2c_device_match,
- 4. .probe = i2c_device_probe,
- 5. .remove = i2c_device_remove,
- 6. .shutdown = i2c_device_shutdown,
- 7. .suspend = i2c_device_suspend,
- 8. .resume = i2c_device_resume,
- 9. };
看一下它的 match 函数
- 1. static int i2c_device_match(struct device *dev, struct device_driver *drv)
- 2. {
- 3. struct i2c_client *client = i2c_verify_client(dev);
- 4. struct i2c_driver *driver;
- 5.
- 6. if (!client)
- 7. return 0;
- 8.
- 9. driver = to_i2c_driver(drv);
- 10. /* match on an id table if there is one */
- 11. if (driver->id_table)
- 12. return i2c_match_id(driver->id_table, client) != NULL;
- 13.
- 14. return 0;
- 15. }
这个 match 函数主要用来匹配我们的 I2C 设备和 I2C 驱动的,如果匹配成功,最后会调用驱动的 probe 函数,来看它如何匹配的。
- 1. static const struct i2c_device_id *i2c_match_id(const struct i2c_device_id *id,
- 2. const struct i2c_client *client)
- 3. {
- 4. while (id->name[0]) {
- 5. if (strcmp(client->name, id->name) == 0)
- 6. return id;
- 7. id++;
- 8. }
- 9. return NULL;
- 0. }
就是判断I2C设备的name字段和驱动中id_table中定义的name字段是否相等。
2.往这条总线上添加设备
- 1. static void i2c_scan_static_board_info(struct i2c_adapter *adapter)
- 2. {
- 3. struct i2c_devinfo *devinfo;
- 4.
- 5. down_read(&__i2c_board_lock);
- 6. list_for_each_entry(devinfo, &__i2c_board_list, list) {
- 7. if (devinfo->busnum == adapter->nr
- 8. && !i2c_new_device(adapter,
- 9. &devinfo->board_info))
- 10. dev_err(&adapter->dev,
- 11. "Can't create device at 0x%02x\n",
- 12. devinfo->board_info.addr);
- 13. }
- 14. up_read(&__i2c_board_lock);
- 15. }
- 1. struct i2c_board_info {
- 2. char type[I2C_NAME_SIZE];
- 3. unsigned short flags;
- 4. unsigned short addr;
- 5. void *platform_data;
- 6. struct dev_archdata *archdata;
- 7. int irq;
- 8. };
- # #define I2C_BOARD_INFO(dev_type, dev_addr) \
- # .type = dev_type, .addr = (dev_addr)
- dev_type为设备的名字,前面也说了,这个name一定要和I2C驱动相同。addr为设备的地址。
- 定义了这样一组信息之后呢,接下来当然是往链表添加这些信息了。
- 1. int __init
- 2. i2c_register_board_info(int busnum,
- 3. struct i2c_board_info const *info, unsigned len)
- 4. {
- 5. int status;
- 6.
- 7. down_write(&__i2c_board_lock);
- 8.
- 9. /* dynamic bus numbers will be assigned after the last static one */
- 10. if (busnum >= __i2c_first_dynamic_bus_num)
- 11. __i2c_first_dynamic_bus_num = busnum + 1;
- 12.
- 13. for (status = 0; len; len--, info++) {
- 14. struct i2c_devinfo *devinfo;
- 15.
- 16. devinfo = kzalloc(sizeof(*devinfo), GFP_KERNEL);
- 17. if (!devinfo) {
- 18. pr_debug("i2c-core: can't register boardinfo!\n");
- 19. status = -ENOMEM;
- 20. break;
- 21. }
- 22.
- 23. devinfo->busnum = busnum;
- 24. devinfo->board_info = *info;
- 25. list_add_tail(&devinfo->list, &__i2c_board_list);
- 26. }
- 27.
- 28. up_write(&__i2c_board_lock);
- 29.
- 30. return status;
- 31. }
第一个参数呢需要注意,它是 I2C 总线号,一定要和具体的 I2C 总线对应。我们看又定义了这样一个结构 struct i2c_devinfo 。
最后是调用list_add_tail往__i2c_board_list这条链表添加设备信息。
然后是i2c_new_device
- # struct i2c_client *
- # i2c_new_device(struct i2c_adapter *adap, struct i2c_board_info const *info)
- # {
- # struct i2c_client *client;
- # int status;
- #
- # /*为I2C设备申请内存*/
- # client = kzalloc(sizeof *client, GFP_KERNEL);
- # if (!client)
- # return NULL;
- #
- # /*指定I2C设备的总线*/
- # client->adapter = adap;
- #
- # client->dev.platform_data = info->platform_data;
- #
- # if (info->archdata)
- # client->dev.archdata = *info->archdata;
- #
- # client->flags = info->flags;
- # client->addr = info->addr; /*I2C设备地址*/
- # client->irq = info->irq;
- #
- # strlcpy(client->name, info->type, sizeof(client->name));
- #
- # /*检查这个地址有没有被设备占用*/
- # /* Check for address business */
- # status = i2c_check_addr(adap, client->addr);
- # if (status)
- # goto out_err;
- #
- # client->dev.parent = &client->adapter->dev; /*指定设备的父设备*/
- # client->dev.bus = &i2c_bus_type; /*指定设备的总线类型*/
- # client->dev.type = &i2c_client_type;
- #
- # dev_set_name(&client->dev, "%d-%04x", i2c_adapter_id(adap),
- # client->addr);
- # status = device_register(&client->dev); /*注册设备*/
- # if (status)
- # goto out_err;
- #
- # dev_dbg(&adap->dev, "client [%s] registered with bus id %s\n",
- # client->name, dev_name(&client->dev));
- #
- # return client;
- #
- # out_err:
- # dev_err(&adap->dev, "Failed to register i2c client %s at 0x%02x "
- # "(%d)\n", client->name, client->addr, status);
- # kfree(client);
- # return NULL;
这个函数的功能是新建一个I2C设备并注册它,在I2C子系统中,I2C设备使用结构structi2c_client描述,那么首先要申请内存空间,I2C设备的主机是谁,必须知道挂载到哪条总线上的,然后就是一些赋值操作,最后就是注册设备,那么这个设备就实实在在的挂在到这条总线上了,这也是新的I2C设备注册方式。
3.i2c_do_add_adapter
你看说着说着就跑远了
- 1. static int i2c_do_add_adapter(struct device_driver *d, void *data)
- 2. {
- 3. struct i2c_driver *driver = to_i2c_driver(d);
- 4. struct i2c_adapter *adap = data;
- 5.
- 6. /* Detect supported devices on that bus, and instantiate them */
- 7. i2c_detect(adap, driver);
- 8.
- 9. /* Let legacy drivers scan this bus for matching devices */
- 10. if (driver->attach_adapter) {
- 11. /* We ignore the return code; if it fails, too bad */
- 12. driver->attach_adapter(adap);
- 13. }
- 14. return 0;
- 15. }
前面通过 i2c_scan_static_board_info 往 I2C 总线上添加设备是新的方式,而这里调用每个 I2C 设备驱动的 attach_adapter 函数,然后在 attach_adapter 函数中去实现设备的注册,这是老的方式, i2c-dev.c 中就是采用的这种方式。至此,总线这块就看完了。
更多推荐
所有评论(0)