ERROR: No supported GPU(s) detected to run this container
ERROR: No supported GPU(s) detected to run this container在拉取yolov5官方Docker image之后docker run --ipc=host --gpus all -it ultralytics/yolov5:latest启动容器使用以下命令查看GPU:root@87fb0c80ec7f:~# nvcc -Vnvcc: NVIDIA
·
ERROR: No supported GPU(s) detected to run this container
在拉取yolov5官方Docker image之后docker run --ipc=host --gpus all -it ultralytics/yolov5:latest
启动容器
使用以下命令查看GPU:
root@87fb0c80ec7f:~# nvcc -V
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2020 NVIDIA Corporation
Built on Mon_Nov_30_19:08:53_PST_2020
Cuda compilation tools, release 11.2, V11.2.67
Build cuda_11.2.r11.2/compiler.29373293_0
root@87fb0c80ec7f:~# nvidia-smi -L
GPU 0: GeForce RTX 3090 (UUID: GPU-834af3c0-5d3b-00a7-c027-e68486b35d2d)
root@87fb0c80ec7f:~# nvidia-smi
Tue Mar 9 06:41:13 2021
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 460.39 Driver Version: 460.39 CUDA Version: 11.2 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|===============================+======================+======================|
| 0 GeForce RTX 3090 Off | 00000000:65:00.0 On | N/A |
| 34% 34C P8 29W / 350W | 242MiB / 24265MiB | 0% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=============================================================================|
+-----------------------------------------------------------------------------+
以上均可以正常查看GPU相关信息,但是在使用的时候却发现用不了GPU。
root@87fb0c80ec7f:~# python -c "import torch; print(torch.cuda.is_available())"
/opt/conda/lib/python3.8/site-packages/torch/cuda/__init__.py:52: UserWarning: CUDA initialization: CUDA unknown error - this may be due to an incorrectly set up environment, e.g. changing env variable CUDA_VISIBLE_DEVICES after program start. Setting the available devices to be zero. (Triggered internally at ../c10/cuda/CUDAFunctions.cpp:104.)
return torch._C._cuda_getDeviceCount() > 0
False
回头查看前面启动容器之后的打印信息:
ERROR: No supported GPU(s) detected to run this container
NOTE: MOFED driver for multi-node communication was not detected.
Multi-node communication performance may be reduced.
相关issue显示:
可能是Docker安装有问题,或者是CUDA安装有问题
小结:
在容器中,即使nvcc -V
,nvidia-smi
都表现正常,GPU还是有用不了的可能
搞了一天,突然想起会不会是GPU设备被占用了,遂将电脑重启,果然重启大法好。
更多推荐
已为社区贡献1条内容
所有评论(0)