思想

Fisher的思想是选出一个投影方向,将高维数据投影到低维,投影后的两类相隔尽可能远

决策方向

1、假设有两个样本数据 W 1 = x 1 0 , x 1 1 , x 1 2 , . . . x 1 n W_1={x_1^0,x_1^1,x_1^2,...x_1^n} W1=x10,x11,x12,...x1n W 2 = x 2 0 , x 2 1 , x 2 2 , . . . x 2 m W_2={x_2^0,x_2^1,x_2^2,...x_2^m} W2=x20,x21,x22,...x2m
第一个样本的类内平均值为
m 1 = 1 n ∑ i = 0 n x i m_1=\frac{1}{n}\sum_{i=0}^n x_i m1=n1i=0nxi
第二个样本的类内平均值
m 2 = 1 m ∑ i = 0 m x i m_2=\frac{1}{m}\sum_{i=0}^m x_i m2=m1i=0mxi
样本总平均值
m = 1 m + n ( ∑ i = 0 n x 1 i + ∑ j = 0 m x 2 j ) m=\frac{1}{m+n}(\sum_{i=0}^n x_1^i+\sum_{j=0}^m x_2^j) m=m+n1(i=0nx1i+j=0mx2j)
第一个样本类内离散度矩阵为
S w 1 = ( x 1 i − m 1 ) ( x 1 i − m 1 ) T S_w^1=(x_1^i-m_1)(x_1^i-m_1)^T Sw1=(x1im1)(x1im1)T
第二个样本类内离散度矩阵为
S w 2 = ( x 2 i − m 2 ) ( x 2 i − m 1 ) T S_w^2=(x_2^i-m_2)(x_2^i-m_1)^T Sw2=(x2im2)(x2im1)T
样本总的类内离散度矩阵为
S w = S w 1 + S w 2 = ∑ i = 1 c l a s s ∑ j = 0 m i ( x i j − m i ) ( x i j − m i ) T S_w=S_w^1+S_w^2=\sum_{i=1}^{class} \sum_{j=0}^{m_i}(x_i^j-m_i)(x_i^j-m_i)^T Sw=Sw1+Sw2=i=1classj=0mi(xijmi)(xijmi)T
类间离散度矩阵为
S b = ( m 1 − m 2 ) ( m 1 − m 2 ) T S_b=(m_1-m_2)(m_1-m_2)^T Sb=(m1m2)(m1m2)T
投影到1维空间
y = w T x y=w^Tx y=wTx
线性变换矩阵为 w w w,则 S w S_w Sw变为
J = w T S b w w T S w w J=\frac{w^TS_bw}{w^TS_ww} J=wTSwwwTSbw
这个 J J J是判别函数, J J J越大,两类分的概率越好。目的是为了求使 J J J变大的 w w w矩阵。由于现在分子分母都是变化的, w w w的幅值变换不影响 J J J的值,设 w T S w w = c w^TS_ww=c wTSww=c c c c为常数。则 J J J变成了如下形式
m a x ( J ) = w T S b w max(J)=w^TS_bw max(J)=wTSbw
s . t : w T S w w = c s.t :w^TS_ww=c s.t:wTSww=c
用拉格朗日乘子法
L ( w , λ ) = w T S b w − λ ( w T S w w − c ) L(w,\lambda)=w^TS_bw-\lambda(w^TS_ww-c) L(w,λ)=wTSbwλ(wTSwwc)
∂ L ( w , λ ) ∂ w = 2 w T S b − 2 λ w T S w = 0 \frac{∂L(w,\lambda)}{∂w}=2w^TS_b-2\lambda w^TS_w=0 wL(w,λ)=2wTSb2λwTSw=0

w T S b = λ w T S w w^TS_b=\lambda w^TS_w wTSb=λwTSw
若S_w是非奇异的,说明S_w可逆
S w − 1 S b w T = λ w T S_w^{-1}S_b w^T=\lambda w^T Sw1SbwT=λwT
说明 w T w^T wT是矩阵 S w − 1 S b S_w^{-1}S_b Sw1Sb属于特征值 λ \lambda λ的特征向量。由于
S b = ( m 1 − m 2 ) ( m 1 − m 2 ) T S_b=(m_1-m_2)(m_1-m_2)^T Sb=(m1m2)(m1m2)T

S w − 1 ( m 1 − m 2 ) ( m 1 − m 2 ) T w T = λ w T S_w^{-1}(m_1-m_2)(m_1-m_2)^T w^T=\lambda w^T Sw1(m1m2)(m1m2)TwT=λwT
式中
( m 1 − m 2 ) T w T (m_1-m_2)^T w^T (m1m2)TwT
是个标量,不影响 w w w方向,所以最终取
w T = S w − 1 ( m 1 − m 2 ) w^T=S_w^{-1}(m_1-m_2) wT=Sw1(m1m2)

决策面

g ( x ) = w T x + w 0 g(x)=w^Tx+w_0 g(x)=wTx+w0
如果不考虑先验概率,可以取
w 0 = − 1 2 ( m 1 + m 2 ) = − m 0 w_0=-\frac{1}{2}(m_1+m_2)=-m_0 w0=21(m1+m2)=m0
m 0 m_0 m0是投影后所有样本均值。
若考虑先验概率,加入贝叶斯信息
w 0 = − 1 2 ( m 1 + m 2 ) T Σ − 1 ( m 1 − m 2 ) − P ( w 2 ) P ( w 1 ) w_0=-\frac{1}{2}(m_1+m_2)^T\Sigma^{-1}(m_1-m_2)-\frac{P(w_2)}{P(w_1)} w0=21(m1+m2)TΣ1(m1m2)P(w1)P(w2)
类内距离看做协方差的话,那么把 Σ − 1 \Sigma^{-1} Σ1换成 S w S_w Sw就变成
w 0 = − 1 2 ( m 1 + m 2 ) T S w − 1 ( m 1 − m 2 ) − P ( w 2 ) P ( w 1 ) w_0=-\frac{1}{2}(m_1+m_2)^TS_w^{-1}(m_1-m_2)-\frac{P(w_2)}{P(w_1)} w0=21(m1+m2)TSw1(m1m2)P(w1)P(w2)
决策面变为
g ( x ) = w T x + w 0 = w T x − 1 2 ( m 1 + m 2 ) T S w − 1 ( m 1 − m 2 ) − P ( w 2 ) P ( w 1 ) g(x)=w^Tx+w_0=w^Tx-\frac{1}{2}(m_1+m_2)^TS_w^{-1}(m_1-m_2)-\frac{P(w_2)}{P(w_1)} g(x)=wTx+w0=wTx21(m1+m2)TSw1(m1m2)P(w1)P(w2)
其中
S w − 1 ( m 1 − m 2 ) = w T S_w^{-1}(m_1-m_2)=w^T Sw1(m1m2)=wT
带入
g ( x ) = w T x + w 0 = w T x − 1 2 ( m 1 + m 2 ) T w T − P ( w 2 ) P ( w 1 ) g(x)=w^Tx+w_0=w^Tx-\frac{1}{2}(m_1+m_2)^Tw^T-\frac{P(w_2)}{P(w_1)} g(x)=wTx+w0=wTx21(m1+m2)TwTP(w1)P(w2)
g ( x ) = w T ( x − 1 2 ( m 1 + m 2 ) T ) − P ( w 2 ) P ( w 1 ) g(x)=w^T(x-\frac{1}{2}(m_1+m_2)^T)-\frac{P(w_2)}{P(w_1)} g(x)=wT(x21(m1+m2)T)P(w1)P(w2)

g ( x ) = w T ( x − 1 2 ( m 1 + m 2 ) T ) − P ( w 2 ) P ( w 1 ) = 0 g(x)=w^T(x-\frac{1}{2}(m_1+m_2)^T)-\frac{P(w_2)}{P(w_1)}=0 g(x)=wT(x21(m1+m2)T)P(w1)P(w2)=0
则最终要考虑的是
w T ( x − 1 2 ( m 1 + m 2 ) T ) = P ( w 2 ) P ( w 1 ) w^T(x-\frac{1}{2}(m_1+m_2)^T)=\frac{P(w_2)}{P(w_1)} wT(x21(m1+m2)T)=P(w1)P(w2)
如果
w T ( x − 1 2 ( m 1 + m 2 ) T ) > P ( w 2 ) P ( w 1 ) w^T(x-\frac{1}{2}(m_1+m_2)^T) > \frac{P(w_2)}{P(w_1)} wT(x21(m1+m2)T)>P(w1)P(w2)

x ∈ w 1 x\in w_1 xw1
如果
w T ( x − 1 2 ( m 1 + m 2 ) T ) < P ( w 2 ) P ( w 1 ) w^T(x-\frac{1}{2}(m_1+m_2)^T) < \frac{P(w_2)}{P(w_1)} wT(x21(m1+m2)T)<P(w1)P(w2)

x ∈ w 2 x\in w_2 xw2

Logo

CSDN联合极客时间,共同打造面向开发者的精品内容学习社区,助力成长!

更多推荐