logo
publist
写文章

简介

该用户还未填写简介

擅长的技术栈

可提供的服务

暂无可提供的服务

MXnet实战心得---值得拥有

最近终于新采购的硬件性能评测做完了!!!本次硬件性能测评的操作系统是Linux Ubuntu 14.04,主要从基础测试和专业深度学习框架测试两方面进行的测试。基础测试用Phoronix Test Suite套件对新采购硬件系统进行了GPU、memory、CPU和IO的测试,并将测试结果上传到OpenBenchmarking.org网站,然后与旧的硬件系统的测试结果以及别人测试结果进行对比。

#ubuntu#深度学习#操作系统
用C++进行hadoop程序开发(hadoop Pipes)

经过几天的努力与查资料,终于实现了分布式模式下运行C++版的MapReduce。下面介绍主要步骤和遇到的问题及解决方案。系统配置:在Linux系统上已安装好hadoop 2.5.2版本(本人系统为CentOS7.0(64位系统)。选择工具:Hadoop采用java编写,因而Hadoop天生支持java语言编写作业,但在实际应用中,有时候,因要用到非java的第三方库或者其他原因,要

#hadoop#mapreduce#c语言 +2
深度学习在图像识别中的研究进展与展望----王晓刚

深度学习是近十年来人工智能领域取得的最重要的突破之一。它在语音识别、自然语言处理、计算机视觉、图像与视频分析、多媒体等诸多领域都取得了巨大成功。本文将重点介绍深度学习在物体识别、物体检测、视频分析的最新研究进展,并探讨其发展趋势。1. 深度学习发展历史的回顾现有的深度学习模型属于神经网络。神经网络的历史可追述到上世纪四十年代,曾经在八九十年代流行。神经网络试图通过模拟大脑认知的机理,解决各种机器学

AutoML学习与整理1

AutoML学习与整理AutoML研究综述:让AI学习设计AI自动机器学习(AutoML)是近年来的一个热门研究方向,比如机器之心曾报道过的谷歌的基于进化算法的神经网络架构搜索方法。近日,来自德国 USU Software AG 和斯图加特大学的两位研究者发布了一篇 AutoML 综述论文,总结了近年来 AutoML 方面的新进展。机器之心整理编译了文章的主体结构,并重点翻译介绍了各种方法的基..

深度学习-----数据预处理

通过最近一段深度学习的学习与实现,发现数据预处理在深度学习中是非常重要的。数据归一化数据预处理中,标准的第一步是数据归一化。虽然这里有一系列可行的方法,但是这一步通常是根据数据的具体情况而明确选择的。特征归一化常用的方法包含如下几种:简单缩放逐样本均值消减(也称为移除直流分量)特征标准化(使数据集中所有特征都具有零均值和单位方差)Eg:在处理

#深度学习
到底了