k8s源码(一): Pod创建流程
深入k8s源码,学习kubelet创建Pod的流程。
目录
kubelet 的工作核心,就是一个控制循环,即:SyncLoop
。驱动整个控制循环的事件有:pod更新事件、pod生命周期变化、kubelet本身设置的执行周期、定时清理事件等。在SyncLoop循环上还有很多Manager,例如probeManager 会定时去监控 pod 中容器的健康状况、statusManager 负责维护状态信息,并把 pod 状态更新到 apiserver、ontainerRefManager 容器引用的管理等等。不过这些Manage在这里先不管,只聚焦于Pod的创建。
注,这里使用的k8s版本号为v1.9.3
,git commit为d2835416544
,因为最近在学漏洞CVE-2017
,所以选的k8s版本比较老,不过问题不大,创建Pod的主要流程基本没变。
syncLoop循环监听管道信息
整个Kubelet的启动,都记录在kubernetes\pkg\kubelet\kubelet.go
文件中的Run
方法中:
// Run starts the kubelet reacting to config updates
func (kl *Kubelet) Run(updates <-chan kubetypes.PodUpdate) {
//注册 logServer
if kl.logServer == nil {
kl.logServer = http.StripPrefix("/logs/", http.FileServer(http.Dir("/var/log/")))
}
if kl.kubeClient == nil {
glog.Warning("No api server defined - no node status update will be sent.")
}
if err := kl.initializeModules(); err != nil {
kl.recorder.Eventf(kl.nodeRef, v1.EventTypeWarning, events.KubeletSetupFailed, err.Error())
glog.Fatal(err)
}
// Start volume manager
go kl.volumeManager.Run(kl.sourcesReady, wait.NeverStop)
if kl.kubeClient != nil {
// Start syncing node status immediately, this may set up things the runtime needs to run.
go wait.Until(kl.syncNodeStatus, kl.nodeStatusUpdateFrequency, wait.NeverStop)
}
go wait.Until(kl.syncNetworkStatus, 30*time.Second, wait.NeverStop)
go wait.Until(kl.updateRuntimeUp, 5*time.Second, wait.NeverStop)
// Start loop to sync iptables util rules
if kl.makeIPTablesUtilChains {
go wait.Until(kl.syncNetworkUtil, 1*time.Minute, wait.NeverStop)
}
// Start a goroutine responsible for killing pods (that are not properly
// handled by pod workers).
go wait.Until(kl.podKiller, 1*time.Second, wait.NeverStop)
// Start gorouting responsible for checking limits in resolv.conf
if kl.dnsConfigurer.ResolverConfig != "" {
go wait.Until(func() { kl.dnsConfigurer.CheckLimitsForResolvConf() }, 30*time.Second, wait.NeverStop)
}
// Start component sync loops.
kl.statusManager.Start()
kl.probeManager.Start()
// Start the pod lifecycle event generator.
//启动 pleg 该模块主要用于周期性地向 container runtime 刷新当前所有容器的状态
kl.pleg.Start()
kl.syncLoop(updates, kl)
}
在Run
方法的最后,会调用kl.syncLoop
方法来启动事件循环,方法位于pkg/kubelet/kubelet.go
:
// syncLoop is the main loop for processing changes. It watches for changes from
// three channels (file, apiserver, and http) and creates a union of them. For
// any new change seen, will run a sync against desired state and running state. If
// no changes are seen to the configuration, will synchronize the last known desired
// state every sync-frequency seconds. Never returns.
func (kl *Kubelet) syncLoop(updates <-chan kubetypes.PodUpdate, handler SyncHandler) {
glog.Info("Starting kubelet main sync loop.")
// The resyncTicker wakes up kubelet to checks if there are any pod workers
// that need to be sync'd. A one-second period is sufficient because the
// sync interval is defaulted to 10s.
syncTicker := time.NewTicker(time.Second)
defer syncTicker.Stop()
housekeepingTicker := time.NewTicker(housekeepingPeriod)
defer housekeepingTicker.Stop()
plegCh := kl.pleg.Watch()
for {
if rs := kl.runtimeState.runtimeErrors(); len(rs) != 0 {
glog.Infof("skipping pod synchronization - %v", rs)
time.Sleep(5 * time.Second)
continue
}
kl.syncLoopMonitor.Store(kl.clock.Now())
if !kl.syncLoopIteration(updates, handler, syncTicker.C, housekeepingTicker.C, plegCh) {
break
}
kl.syncLoopMonitor.Store(kl.clock.Now())
}
syncLoop
将同时 watch 3 个不同来源的 pod 信息的变化(file,http,apiserver),一旦某个来源的 pod 信息发生了更新(创建/更新/删除),这个 channel 中就会出现被更新的 pod 信息和更新的具体操作。而这个监听逻辑,主要由它调用的syncLoopIteration
实现。
syncLoopIteration
syncLoopIteration
会从不同的管道读取,并将Pods交付给指定Handler:
syncLoopIteration reads from various channels and dispatches pods to the given handler.
其传入的参数有5个,1个handler和4个chan:
// Arguments:
// 1. configCh: a channel to read config events from
// 2. handler: the SyncHandler to dispatch pods to
// 3. syncCh: a channel to read periodic sync events from
// 4. houseKeepingCh: a channel to read housekeeping events from
// 5. plegCh: a channel to read PLEG updates from
// * configCh: dispatch the pods for the config change to the appropriate
// handler callback for the event type
// * plegCh: update the runtime cache; sync pod
// * syncCh: sync all pods waiting for sync
// * houseKeepingCh: trigger cleanup of pods
由于只关注Pod的创建过程,因此只探讨configCh
部分的代码即可:
func (kl *Kubelet) syncLoopIteration(configCh <-chan kubetypes.PodUpdate, handler SyncHandler,
//方法会监听多个 channel,当发现任何一个 channel 有数据就交给 handler 去处理,在 handler 中通过调用 dispatchWork 分发任务
syncCh <-chan time.Time, housekeepingCh <-chan time.Time, plegCh <-chan *pleg.PodLifecycleEvent) bool {
select {
case u, open := <-configCh:
if !open {
klog.Errorf("Update channel is closed. Exiting the sync loop.")
return false
}
switch u.Op {
case kubetypes.ADD:
klog.V(2).Infof("SyncLoop (ADD, %q): %q", u.Source, format.Pods(u.Pods))
handler.HandlePodAdditions(u.Pods)
case kubetypes.UPDATE:
klog.V(2).Infof("SyncLoop (UPDATE, %q): %q", u.Source, format.PodsWithDeletionTimestamps(u.Pods))
handler.HandlePodUpdates(u.Pods)
case kubetypes.REMOVE:
klog.V(2).Infof("SyncLoop (REMOVE, %q): %q", u.Source, format.Pods(u.Pods))
handler.HandlePodRemoves(u.Pods)
case kubetypes.RECONCILE:
klog.V(4).Infof("SyncLoop (RECONCILE, %q): %q", u.Source, format.Pods(u.Pods))
handler.HandlePodReconcile(u.Pods)
case kubetypes.DELETE:
klog.V(2).Infof("SyncLoop (DELETE, %q): %q", u.Source, format.Pods(u.Pods))
handler.HandlePodUpdates(u.Pods)
case kubetypes.SET:
klog.Errorf("Kubelet does not support snapshot update")
default:
klog.Errorf("Invalid event type received: %d.", u.Op)
}
kl.sourcesReady.AddSource(u.Source)
...
}
可以看到,该模块会根据configCh
中的u.Op
来选择对Pods的处理方式。当事件类型为ADD
时,即调用HandlePodAdditions
接口创建Pods。
HandlePodAdditions
进入该接口实现体看下:
// HandlePodAdditions is the callback in SyncHandler for pods being added from
// a config source.
func (kl *Kubelet) HandlePodAdditions(pods []*v1.Pod) {
start := kl.clock.Now()
// 将待创建的Pods按创建时间排序
sort.Sort(sliceutils.PodsByCreationTime(pods))
for _, pod := range pods {
// 获取当前Pod管理器中已存在的Pods
existingPods := kl.podManager.GetPods()
// Always add the pod to the pod manager. Kubelet relies on the pod
// manager as the source of truth for the desired state. If a pod does
// not exist in the pod manager, it means that it has been deleted in
// the apiserver and no action (other than cleanup) is required.
// 将待创建的Pod加入Pod管理器中
kl.podManager.AddPod(pod)
if kubepod.IsMirrorPod(pod) {
kl.handleMirrorPod(pod, start)
continue
}
// 如果该Pod没有被terminate
if !kl.podIsTerminated(pod) {
// Only go through the admission process if the pod is not
// terminated.
// We failed pods that we rejected, so activePods include all admitted
// pods that are alive.
// 从existingPods中筛选出处于active状态的Pods
activePods := kl.filterOutTerminatedPods(existingPods)
// Check if we can admit the pod; if not, reject it.
// 验证该Pod是否被允许在该节点允许,如果不可以则拒绝创建
if ok, reason, message := kl.canAdmitPod(activePods, pod); !ok {
kl.rejectPod(pod, reason, message)
continue
}
}
mirrorPod, _ := kl.podManager.GetMirrorPodByPod(pod)
// 把该Pod交给dispatchWork来创建
kl.dispatchWork(pod, kubetypes.SyncPodCreate, mirrorPod, start)
// Pod创建完毕后,加入probeManager进行健康检查
kl.probeManager.AddPod(pod)
}
}
代码流程还是相对明确的。可以看到,HandlePodAdditions
的主要工作为:
1> 按照创建时间给待创建的Pods进行排序。然后对其中每个Pod进行下述处理;
2> 获取当前Pod管理器中已存在的所有Pods(existingPods);
3> 将该Pod添加到Pod管理器中;
4> 检验该Pod是否能在该节点上允许,如果不允许则直接拒绝;
5> 将该Pod交付给dispathWork
来创建;
6> 当该Pod创建完毕后,将其添加到probeManager中,进行健康检查。
也就是说,创建Pod的,实际上是dispathWork
方法,且传入参数kubetypes.SyncPodCreate
指明对该Pod的操作为创建。
dispatchWork
我们进入该方法看下:
func (kl *Kubelet) dispatchWork(pod *v1.Pod, syncType kubetypes.SyncPodType, mirrorPod *v1.Pod, start time.Time) {
if kl.podIsTerminated(pod) {
if pod.DeletionTimestamp != nil {
// If the pod is in a terminated state, there is no pod worker to
// handle the work item. Check if the DeletionTimestamp has been
// set, and force a status update to trigger a pod deletion request
// to the apiserver.
kl.statusManager.TerminatePod(pod)
}
return
}
// Run the sync in an async worker.
kl.podWorkers.UpdatePod(&UpdatePodOptions{
Pod: pod,
MirrorPod: mirrorPod,
UpdateType: syncType,
OnCompleteFunc: func(err error) {
if err != nil {
metrics.PodWorkerLatency.WithLabelValues(syncType.String()).Observe(metrics.SinceInMicroseconds(start))
}
},
})
// Note the number of containers for new pods.
if syncType == kubetypes.SyncPodCreate {
metrics.ContainersPerPodCount.Observe(float64(len(pod.Spec.Containers)))
}
}
可以看到,该方法主要做三个工作:
1> 如果Pod是终结态(“Failed” or “Succeeded”),则对status进行更新,触发对Pod的删除;
2> 封装一个UpdatePodOptions
来交给UpdatePod
处理,其中字段UpdateType
就是方法的syncType
参数,在这里就是kubetypes.SyncPodCreate
;
3> 如果是创建操作,当然这里就是创建操作,会记录下新的Pod中的container数量。
也即,核心操作是UpdatePod
方法,该文件位于pkg/kubelet/pod_workers.go
。
UpdatePod
func (p *podWorkers) UpdatePod(options *UpdatePodOptions) {
pod := options.Pod
uid := pod.UID
var podUpdates chan UpdatePodOptions
var exists bool
p.podLock.Lock()
defer p.podLock.Unlock()
// 如果该pod在podUpdates数组里面找不到,那么就创建channel,并启动异步线程,调用managePodLoop
if podUpdates, exists = p.podUpdates[uid]; !exists {
// We need to have a buffer here, because checkForUpdates() method that
// puts an update into channel is called from the same goroutine where
// the channel is consumed. However, it is guaranteed that in such case
// the channel is empty, so buffer of size 1 is enough.
podUpdates = make(chan UpdatePodOptions, 1)
p.podUpdates[uid] = podUpdates
// Creating a new pod worker either means this is a new pod, or that the
// kubelet just restarted. In either case the kubelet is willing to believe
// the status of the pod for the first pod worker sync. See corresponding
// comment in syncPod.
go func() {
defer runtime.HandleCrash()
p.managePodLoop(podUpdates)
}()
}
if !p.isWorking[pod.UID] {
p.isWorking[pod.UID] = true
podUpdates <- *options
} else {
// if a request to kill a pod is pending, we do not let anything overwrite that request.
update, found := p.lastUndeliveredWorkUpdate[pod.UID]
if !found || update.UpdateType != kubetypes.SyncPodKill {
p.lastUndeliveredWorkUpdate[pod.UID] = *options
}
}
}
可以看到,该方法会在p.podUpdates
数组里找当前Pod,如果没找到,就说明该Pod是要新创建的,或者Kubelet刚刚重启。不管是那种情况,方法都会创建一个新的channel,这个channel元素个数为1,即只有一个UpdatePodOptions
。完成后,将该channel加入到p.podUpdates
中。接着,开始调用managePodLoop
。
managePodLoop
func (p *podWorkers) managePodLoop(podUpdates <-chan UpdatePodOptions) {
var lastSyncTime time.Time
// 遍历channel
for update := range podUpdates {
err := func() error {
podUID := update.Pod.UID
// This is a blocking call that would return only if the cache
// has an entry for the pod that is newer than minRuntimeCache
// Time. This ensures the worker doesn't start syncing until
// after the cache is at least newer than the finished time of
// the previous sync.
// 直到cache里面有新数据之前这段代码会阻塞,这保证worker在cache里面有新的数据之前不会提前开始
status, err := p.podCache.GetNewerThan(podUID, lastSyncTime)
//syncPodFn会在kubelet初始化的时候设置,调用的是kubelet的syncPod方法
if err != nil {
// This is the legacy event thrown by manage pod loop
// all other events are now dispatched from syncPodFn
p.recorder.Eventf(update.Pod, v1.EventTypeWarning, events.FailedSync, "error determining status: %v", err)
return err
}
err = p.syncPodFn(syncPodOptions{
mirrorPod: update.MirrorPod,
pod: update.Pod,
podStatus: status,
killPodOptions: update.KillPodOptions,
updateType: update.UpdateType,
})
lastSyncTime = time.Now()
return err
}()
// notify the call-back function if the operation succeeded or not
if update.OnCompleteFunc != nil {
update.OnCompleteFunc(err)
}
if err != nil {
// IMPORTANT: we do not log errors here, the syncPodFn is responsible for logging errors
glog.Errorf("Error syncing pod %s (%q), skipping: %v", update.Pod.UID, format.Pod(update.Pod), err)
}
p.wrapUp(update.Pod.UID, err)
}
}
这个方法会遍历传入的channel中的数据,不过这里由于刚刚传入channel元素个数只有1,因此相当于取出其中的UpdatePodOptions
,命名为update
。然后,会根据update
中的字段构造一个新的结构体syncPodOptions
,并将其传给syncPodFn
进行处理。
synvPodFn
是在Kubelet初始化时设置的。在初始化时,Kubelet会在执行NewMainKubelet
时调用newPodWorkers
方法设置syncPodFn
为Kublet的syncPod
方法,如下:
func NewMainKubelet(...){
...
klet := &Kubelet{...}
...
klet.podWorkers = newPodWorkers(klet.syncPod, kubeDeps.Recorder, klet.workQueue, klet.resyncInterval, backOffPeriod, klet.podCache)
...
}
也即,要创建Pod,就要进入方法syncPod
,该方法位于pkg/kubelet/kubelet.go
中。
syncPod
func (kl *Kubelet) syncPod(o syncPodOptions) error {
// pull out the required options
pod := o.pod
mirrorPod := o.mirrorPod
podStatus := o.podStatus
updateType := o.updateType
// if we want to kill a pod, do it now!
if updateType == kubetypes.SyncPodKill {
killPodOptions := o.killPodOptions
if killPodOptions == nil || killPodOptions.PodStatusFunc == nil {
return fmt.Errorf("kill pod options are required if update type is kill")
}
apiPodStatus := killPodOptions.PodStatusFunc(pod, podStatus)
kl.statusManager.SetPodStatus(pod, apiPodStatus)
// we kill the pod with the specified grace period since this is a termination
if err := kl.killPod(pod, nil, podStatus, killPodOptions.PodTerminationGracePeriodSecondsOverride); err != nil {
kl.recorder.Eventf(pod, v1.EventTypeWarning, events.FailedToKillPod, "error killing pod: %v", err)
// there was an error killing the pod, so we return that error directly
utilruntime.HandleError(err)
return err
}
return nil
}
// Latency measurements for the main workflow are relative to the
// first time the pod was seen by the API server.
var firstSeenTime time.Time
if firstSeenTimeStr, ok := pod.Annotations[kubetypes.ConfigFirstSeenAnnotationKey]; ok {
firstSeenTime = kubetypes.ConvertToTimestamp(firstSeenTimeStr).Get()
}
// Record pod worker start latency if being created
// TODO: make pod workers record their own latencies
if updateType == kubetypes.SyncPodCreate {
if !firstSeenTime.IsZero() {
// This is the first time we are syncing the pod. Record the latency
// since kubelet first saw the pod if firstSeenTime is set.
metrics.PodWorkerStartLatency.Observe(metrics.SinceInMicroseconds(firstSeenTime))
} else {
glog.V(3).Infof("First seen time not recorded for pod %q", pod.UID)
}
}
// Generate final API pod status with pod and status manager status
apiPodStatus := kl.generateAPIPodStatus(pod, podStatus)
// The pod IP may be changed in generateAPIPodStatus if the pod is using host network. (See #24576)
// TODO(random-liu): After writing pod spec into container labels, check whether pod is using host network, and
// set pod IP to hostIP directly in runtime.GetPodStatus
podStatus.IP = apiPodStatus.PodIP
// Record the time it takes for the pod to become running.
existingStatus, ok := kl.statusManager.GetPodStatus(pod.UID)
if !ok || existingStatus.Phase == v1.PodPending && apiPodStatus.Phase == v1.PodRunning &&
!firstSeenTime.IsZero() {
metrics.PodStartLatency.Observe(metrics.SinceInMicroseconds(firstSeenTime))
}
// 校验该Pod能否运行
runnable := kl.canRunPod(pod)
// 如果不能运行,那么回写container的等待原因
if !runnable.Admit {
// Pod is not runnable; update the Pod and Container statuses to why.
apiPodStatus.Reason = runnable.Reason
apiPodStatus.Message = runnable.Message
// Waiting containers are not creating.
const waitingReason = "Blocked"
for _, cs := range apiPodStatus.InitContainerStatuses {
if cs.State.Waiting != nil {
cs.State.Waiting.Reason = waitingReason
}
}
for _, cs := range apiPodStatus.ContainerStatuses {
if cs.State.Waiting != nil {
cs.State.Waiting.Reason = waitingReason
}
}
}
// Update status in the status manager
// 更新状态管理器中的状态
kl.statusManager.SetPodStatus(pod, apiPodStatus)
// Kill pod if it should not be running
// 如果校验没通过或pod已被删除或pod跑失败了,那么kill掉pod
if !runnable.Admit || pod.DeletionTimestamp != nil || apiPodStatus.Phase == v1.PodFailed {
var syncErr error
if err := kl.killPod(pod, nil, podStatus, nil); err != nil {
kl.recorder.Eventf(pod, v1.EventTypeWarning, events.FailedToKillPod, "error killing pod: %v", err)
syncErr = fmt.Errorf("error killing pod: %v", err)
utilruntime.HandleError(syncErr)
} else {
if !runnable.Admit {
// There was no error killing the pod, but the pod cannot be run.
// Return an error to signal that the sync loop should back off.
syncErr = fmt.Errorf("pod cannot be run: %s", runnable.Message)
}
}
return syncErr
}
// If the network plugin is not ready, only start the pod if it uses the host network
//校验网络插件是否已准备好
if rs := kl.runtimeState.networkErrors(); len(rs) != 0 && !kubecontainer.IsHostNetworkPod(pod) {
kl.recorder.Eventf(pod, v1.EventTypeWarning, events.NetworkNotReady, "network is not ready: %v", rs)
return fmt.Errorf("network is not ready: %v", rs)
}
// Create Cgroups for the pod and apply resource parameters
// to them if cgroups-per-qos flag is enabled.
// 为该Pod创建containerManager
pcm := kl.containerManager.NewPodContainerManager()
// If pod has already been terminated then we need not create
// or update the pod's cgroup
// 如果该Pod不是终结态
if !kl.podIsTerminated(pod) {
// When the kubelet is restarted with the cgroups-per-qos
// flag enabled, all the pod's running containers
// should be killed intermittently and brought back up
// under the qos cgroup hierarchy.
// Check if this is the pod's first sync
firstSync := true
// 校验该pod是否首次创建
for _, containerStatus := range apiPodStatus.ContainerStatuses {
if containerStatus.State.Running != nil {
firstSync = false
break
}
}
// Don't kill containers in pod if pod's cgroups already
// exists or the pod is running for the first time
podKilled := false
// 如果该pod 的cgroups(container groups)不存在,并且不是首次启动,那么kill掉
if !pcm.Exists(pod) && !firstSync {
if err := kl.killPod(pod, nil, podStatus, nil); err == nil {
podKilled = true
}
}
// Create and Update pod's Cgroups
// Don't create cgroups for run once pod if it was killed above
// The current policy is not to restart the run once pods when
// the kubelet is restarted with the new flag as run once pods are
// expected to run only once and if the kubelet is restarted then
// they are not expected to run again.
// We don't create and apply updates to cgroup if its a run once pod and was killed above
// 如果该pod在上面没有被kill掉,或重启策略不是永不重启
if !(podKilled && pod.Spec.RestartPolicy == v1.RestartPolicyNever) {
// 如果该pod的cgroups不存在,那么就创建cgroups
if !pcm.Exists(pod) {
if err := kl.containerManager.UpdateQOSCgroups(); err != nil {
glog.V(2).Infof("Failed to update QoS cgroups while syncing pod: %v", err)
}
if err := pcm.EnsureExists(pod); err != nil {
kl.recorder.Eventf(pod, v1.EventTypeWarning, events.FailedToCreatePodContainer, "unable to ensure pod container exists: %v", err)
return fmt.Errorf("failed to ensure that the pod: %v cgroups exist and are correctly applied: %v", pod.UID, err)
}
}
}
}
//为静态pod 创建镜像
// Create Mirror Pod for Static Pod if it doesn't already exist
if kubepod.IsStaticPod(pod) {
podFullName := kubecontainer.GetPodFullName(pod)
deleted := false
if mirrorPod != nil {
if mirrorPod.DeletionTimestamp != nil || !kl.podManager.IsMirrorPodOf(mirrorPod, pod) {
// The mirror pod is semantically different from the static pod. Remove
// it. The mirror pod will get recreated later.
glog.Warningf("Deleting mirror pod %q because it is outdated", format.Pod(mirrorPod))
if err := kl.podManager.DeleteMirrorPod(podFullName); err != nil {
glog.Errorf("Failed deleting mirror pod %q: %v", format.Pod(mirrorPod), err)
} else {
deleted = true
}
}
}
if mirrorPod == nil || deleted {
node, err := kl.GetNode()
if err != nil || node.DeletionTimestamp != nil {
glog.V(4).Infof("No need to create a mirror pod, since node %q has been removed from the cluster", kl.nodeName)
} else {
glog.V(4).Infof("Creating a mirror pod for static pod %q", format.Pod(pod))
if err := kl.podManager.CreateMirrorPod(pod); err != nil {
glog.Errorf("Failed creating a mirror pod for %q: %v", format.Pod(pod), err)
}
}
}
}
// Make data directories for the pod
// 创建pod的文件目录
if err := kl.makePodDataDirs(pod); err != nil {
kl.recorder.Eventf(pod, v1.EventTypeWarning, events.FailedToMakePodDataDirectories, "error making pod data directories: %v", err)
glog.Errorf("Unable to make pod data directories for pod %q: %v", format.Pod(pod), err)
return err
}
// Volume manager will not mount volumes for terminated pods
// 如果该pod没有被终止,那么需要等待attach/mount volumes
if !kl.podIsTerminated(pod) {
// Wait for volumes to attach/mount
if err := kl.volumeManager.WaitForAttachAndMount(pod); err != nil {
kl.recorder.Eventf(pod, v1.EventTypeWarning, events.FailedMountVolume, "Unable to mount volumes for pod %q: %v", format.Pod(pod), err)
glog.Errorf("Unable to mount volumes for pod %q: %v; skipping pod", format.Pod(pod), err)
return err
}
}
// Fetch the pull secrets for the pod
// 如果有 image secrets,去 apiserver 获取对应的 secrets 数据
pullSecrets := kl.getPullSecretsForPod(pod)
// Call the container runtime's SyncPod callback
// 真正的容器创建逻辑,调用SyncPod来真正的创建Pod
result := kl.containerRuntime.SyncPod(pod, apiPodStatus, podStatus, pullSecrets, kl.backOff)
kl.reasonCache.Update(pod.UID, result)
if err := result.Error(); err != nil {
// Do not record an event here, as we keep all event logging for sync pod failures
// local to container runtime so we get better errors
return err
}
return nil
}
该方法比较复杂,主要是完成创建Pod前的准备工作
,主要准备工作如下:
1> 校验该Pod能否运行,如果不能运行,那么回写container的等待原因,然后更新statusManager
的状态信息;
2> 如果校验没通过或Pod已被删除或Pod跑失败了,那么kill掉Pod,返回;
3> 校验网络插件是否已经准备好,如果没有,直接返回;
4> 如果该Pod的cgroups
(container groups)不存在,且不是首次运行,则kill掉;
5> 如果该Pod的cgroups不存在,且在上面没有被kill掉(首次运行),或重启策略不是永不重启,则创建cgroups;
6> 为静态Pod创建镜像;
7> 创建Pod的基础文件目录,等待volume attach/mount
;
8> 拉取这个Pod的Secret;
9> 调用containerRuntime.SyncPod
来真正创建Pod。
也就是说,上面这个syncPod
只是完成了一些创建前的准备工作,真正执行创建Pod的,是containerRuntime.SyncPod
方法。位于:pkg/kubelet/kuberuntime/kuberuntime_manager.go
SyncPod
func (m *kubeGenericRuntimeManager) SyncPod(pod *v1.Pod, _ v1.PodStatus, podStatus *kubecontainer.PodStatus, pullSecrets []v1.Secret, backOff *flowcontrol.Backoff) (result kubecontainer.PodSyncResult) {
// Step 1: Compute sandbox and container changes.
// 计算一下有哪些pod中container有没有变化,有哪些container需要创建,有哪些container需要kill掉
podContainerChanges := m.computePodActions(pod, podStatus)
glog.V(3).Infof("computePodActions got %+v for pod %q", podContainerChanges, format.Pod(pod))
if podContainerChanges.CreateSandbox {
ref, err := ref.GetReference(legacyscheme.Scheme, pod)
if err != nil {
glog.Errorf("Couldn't make a ref to pod %q: '%v'", format.Pod(pod), err)
}
if podContainerChanges.SandboxID != "" {
m.recorder.Eventf(ref, v1.EventTypeNormal, events.SandboxChanged, "Pod sandbox changed, it will be killed and re-created.")
} else {
glog.V(4).Infof("SyncPod received new pod %q, will create a sandbox for it", format.Pod(pod))
}
}
// Step 2: Kill the pod if the sandbox has changed.
// kill掉 sandbox 已经改变的 pod
if podContainerChanges.KillPod {
if !podContainerChanges.CreateSandbox {
glog.V(4).Infof("Stopping PodSandbox for %q because all other containers are dead.", format.Pod(pod))
} else {
glog.V(4).Infof("Stopping PodSandbox for %q, will start new one", format.Pod(pod))
}
killResult := m.killPodWithSyncResult(pod, kubecontainer.ConvertPodStatusToRunningPod(m.runtimeName, podStatus), nil)
result.AddPodSyncResult(killResult)
if killResult.Error() != nil {
glog.Errorf("killPodWithSyncResult failed: %v", killResult.Error())
return
}
if podContainerChanges.CreateSandbox {
m.purgeInitContainers(pod, podStatus)
}
} else {
// Step 3: kill any running containers in this pod which are not to keep.
// kill掉ContainersToKill列表中的container
for containerID, containerInfo := range podContainerChanges.ContainersToKill {
glog.V(3).Infof("Killing unwanted container %q(id=%q) for pod %q", containerInfo.name, containerID, format.Pod(pod))
killContainerResult := kubecontainer.NewSyncResult(kubecontainer.KillContainer, containerInfo.name)
result.AddSyncResult(killContainerResult)
if err := m.killContainer(pod, containerID, containerInfo.name, containerInfo.message, nil); err != nil {
killContainerResult.Fail(kubecontainer.ErrKillContainer, err.Error())
glog.Errorf("killContainer %q(id=%q) for pod %q failed: %v", containerInfo.name, containerID, format.Pod(pod), err)
return
}
}
}
// Keep terminated init containers fairly aggressively controlled
// This is an optmization because container removals are typically handled
// by container garbage collector.
// 清理同名的 Init Container
m.pruneInitContainersBeforeStart(pod, podStatus)
// We pass the value of the podIP down to generatePodSandboxConfig and
// generateContainerConfig, which in turn passes it to various other
// functions, in order to facilitate functionality that requires this
// value (hosts file and downward API) and avoid races determining
// the pod IP in cases where a container requires restart but the
// podIP isn't in the status manager yet.
//
// We default to the IP in the passed-in pod status, and overwrite it if the
// sandbox needs to be (re)started.
podIP := ""
if podStatus != nil {
podIP = podStatus.IP
}
// Step 4: Create a sandbox for the pod if necessary.
// 为pod创建sandbox
podSandboxID := podContainerChanges.SandboxID
if podContainerChanges.CreateSandbox {
var msg string
var err error
glog.V(4).Infof("Creating sandbox for pod %q", format.Pod(pod))
createSandboxResult := kubecontainer.NewSyncResult(kubecontainer.CreatePodSandbox, format.Pod(pod))
result.AddSyncResult(createSandboxResult)
podSandboxID, msg, err = m.createPodSandbox(pod, podContainerChanges.Attempt)
if err != nil {
createSandboxResult.Fail(kubecontainer.ErrCreatePodSandbox, msg)
glog.Errorf("createPodSandbox for pod %q failed: %v", format.Pod(pod), err)
ref, err := ref.GetReference(legacyscheme.Scheme, pod)
if err != nil {
glog.Errorf("Couldn't make a ref to pod %q: '%v'", format.Pod(pod), err)
}
m.recorder.Eventf(ref, v1.EventTypeWarning, events.FailedCreatePodSandBox, "Failed create pod sandbox.")
return
}
glog.V(4).Infof("Created PodSandbox %q for pod %q", podSandboxID, format.Pod(pod))
podSandboxStatus, err := m.runtimeService.PodSandboxStatus(podSandboxID)
if err != nil {
ref, err := ref.GetReference(legacyscheme.Scheme, pod)
if err != nil {
glog.Errorf("Couldn't make a ref to pod %q: '%v'", format.Pod(pod), err)
}
m.recorder.Eventf(ref, v1.EventTypeWarning, events.FailedStatusPodSandBox, "Unable to get pod sandbox status: %v", err)
glog.Errorf("Failed to get pod sandbox status: %v; Skipping pod %q", err, format.Pod(pod))
result.Fail(err)
return
}
// If we ever allow updating a pod from non-host-network to
// host-network, we may use a stale IP.
if !kubecontainer.IsHostNetworkPod(pod) {
// Overwrite the podIP passed in the pod status, since we just started the pod sandbox.
podIP = m.determinePodSandboxIP(pod.Namespace, pod.Name, podSandboxStatus)
glog.V(4).Infof("Determined the ip %q for pod %q after sandbox changed", podIP, format.Pod(pod))
}
}
// Get podSandboxConfig for containers to start.
configPodSandboxResult := kubecontainer.NewSyncResult(kubecontainer.ConfigPodSandbox, podSandboxID)
result.AddSyncResult(configPodSandboxResult)
//生成Sandbox的config配置,如pod的DNS、hostName、端口映射
podSandboxConfig, err := m.generatePodSandboxConfig(pod, podContainerChanges.Attempt)
if err != nil {
message := fmt.Sprintf("GeneratePodSandboxConfig for pod %q failed: %v", format.Pod(pod), err)
glog.Error(message)
configPodSandboxResult.Fail(kubecontainer.ErrConfigPodSandbox, message)
return
}
// Step 5: start the init container.
// 启动初始化容器
if container := podContainerChanges.NextInitContainerToStart; container != nil {
// Start the next init container.
startContainerResult := kubecontainer.NewSyncResult(kubecontainer.StartContainer, container.Name)
result.AddSyncResult(startContainerResult)
isInBackOff, msg, err := m.doBackOff(pod, container, podStatus, backOff)
if isInBackOff {
startContainerResult.Fail(err, msg)
glog.V(4).Infof("Backing Off restarting init container %+v in pod %v", container, format.Pod(pod))
return
}
glog.V(4).Infof("Creating init container %+v in pod %v", container, format.Pod(pod))
// 启动
if msg, err := m.startContainer(podSandboxID, podSandboxConfig, container, pod, podStatus, pullSecrets, podIP); err != nil {
startContainerResult.Fail(err, msg)
utilruntime.HandleError(fmt.Errorf("init container start failed: %v: %s", err, msg))
return
}
// Successfully started the container; clear the entry in the failure
glog.V(4).Infof("Completed init container %q for pod %q", container.Name, format.Pod(pod))
}
// Step 6: start containers in podContainerChanges.ContainersToStart.
// 启动容器列表
for _, idx := range podContainerChanges.ContainersToStart {
container := &pod.Spec.Containers[idx]
startContainerResult := kubecontainer.NewSyncResult(kubecontainer.StartContainer, container.Name)
result.AddSyncResult(startContainerResult)
isInBackOff, msg, err := m.doBackOff(pod, container, podStatus, backOff)
if isInBackOff {
startContainerResult.Fail(err, msg)
glog.V(4).Infof("Backing Off restarting container %+v in pod %v", container, format.Pod(pod))
continue
}
glog.V(4).Infof("Creating container %+v in pod %v", container, format.Pod(pod))
// 启动
if msg, err := m.startContainer(podSandboxID, podSandboxConfig, container, pod, podStatus, pullSecrets, podIP); err != nil {
startContainerResult.Fail(err, msg)
// known errors that are logged in other places are logged at higher levels here to avoid
// repetitive log spam
switch {
case err == images.ErrImagePullBackOff:
glog.V(3).Infof("container start failed: %v: %s", err, msg)
default:
utilruntime.HandleError(fmt.Errorf("container start failed: %v: %s", err, msg))
}
continue
}
}
return
}
该方法的主要工作如下:
1> 首先会调用computePodActions
计算一下有哪些Pod中的container有没有变化,有哪些container需要创建,有哪些container需要kill掉;
2> kill掉Sandbox
已经改变的Pod;
3> 如果有container已改变,那么需要调用killContainer
方法来kill掉ContainersToKill
列表中的container;
4> 调用pruneInitContainersBeforeStart
方法清理同名的Init Container
;
5> 调用createPodSandbox
,方法,创建需要被创建的Sandbox
;
6> 生成Sandbox
的config配置,如Pod的DNS、hostName、端口映射等等;
7> 启动Init Container
;
8> 遍历ContainersToStart
,启动容器列表;
不管是Init Container
还是普通的Container,启动它都需要调用startContainer
来实现。该方法位于:pkg/kubelet/kuberuntime/kuberuntime_container.go
中,进去看看:
startContainer
func (m *kubeGenericRuntimeManager) startContainer(podSandboxID string, podSandboxConfig *runtimeapi.PodSandboxConfig, container *v1.Container, pod *v1.Pod, podStatus *kubecontainer.PodStatus, pullSecrets []v1.Secret, podIP string) (string, error) {
// Step 1: pull the image.
// 拉取镜像
imageRef, msg, err := m.imagePuller.EnsureImageExists(pod, container, pullSecrets)
if err != nil {
m.recordContainerEvent(pod, container, "", v1.EventTypeWarning, events.FailedToCreateContainer, "Error: %v", grpc.ErrorDesc(err))
return msg, err
}
// Step 2: create the container.
// 开始创建container
ref, err := kubecontainer.GenerateContainerRef(pod, container)
if err != nil {
glog.Errorf("Can't make a ref to pod %q, container %v: %v", format.Pod(pod), container.Name, err)
}
glog.V(4).Infof("Generating ref for container %s: %#v", container.Name, ref)
// For a new container, the RestartCount should be 0
// 如果是个新的container,那么restartCount应该为0
restartCount := 0
containerStatus := podStatus.FindContainerStatusByName(container.Name)
if containerStatus != nil {
restartCount = containerStatus.RestartCount + 1
}
// 生成Container config
containerConfig, err := m.generateContainerConfig(container, pod, restartCount, podIP, imageRef)
if err != nil {
m.recordContainerEvent(pod, container, "", v1.EventTypeWarning, events.FailedToCreateContainer, "Error: %v", grpc.ErrorDesc(err))
return grpc.ErrorDesc(err), ErrCreateContainerConfig
}
// 调用CRI接口创建Container
containerID, err := m.runtimeService.CreateContainer(podSandboxID, containerConfig, podSandboxConfig)
if err != nil {
m.recordContainerEvent(pod, container, containerID, v1.EventTypeWarning, events.FailedToCreateContainer, "Error: %v", grpc.ErrorDesc(err))
return grpc.ErrorDesc(err), ErrCreateContainer
}
// 调用生命周期的钩子,预启动Pre Start Container
err = m.internalLifecycle.PreStartContainer(pod, container, containerID)
if err != nil {
m.recorder.Eventf(ref, v1.EventTypeWarning, events.FailedToStartContainer, "Internal PreStartContainer hook failed: %v", err)
return "Internal PreStartContainer hook failed", err
}
m.recordContainerEvent(pod, container, containerID, v1.EventTypeNormal, events.CreatedContainer, "Created container")
if ref != nil {
m.containerRefManager.SetRef(kubecontainer.ContainerID{
Type: m.runtimeName,
ID: containerID,
}, ref)
}
// Step 3: start the container.
// 调用CRI接口启动container
err = m.runtimeService.StartContainer(containerID)
if err != nil {
m.recordContainerEvent(pod, container, containerID, v1.EventTypeWarning, events.FailedToStartContainer, "Error: %v", grpc.ErrorDesc(err))
return grpc.ErrorDesc(err), kubecontainer.ErrRunContainer
}
m.recordContainerEvent(pod, container, containerID, v1.EventTypeNormal, events.StartedContainer, "Started container")
// Symlink container logs to the legacy container log location for cluster logging
// support.
// TODO(random-liu): Remove this after cluster logging supports CRI container log path.
containerMeta := containerConfig.GetMetadata()
sandboxMeta := podSandboxConfig.GetMetadata()
legacySymlink := legacyLogSymlink(containerID, containerMeta.Name, sandboxMeta.Name,
sandboxMeta.Namespace)
containerLog := filepath.Join(podSandboxConfig.LogDirectory, containerConfig.LogPath)
if err := m.osInterface.Symlink(containerLog, legacySymlink); err != nil {
glog.Errorf("Failed to create legacy symbolic link %q to container %q log %q: %v",
legacySymlink, containerID, containerLog, err)
}
// Step 4: execute the post start hook.
// 依然是调用生命周期中设置的钩子 post start
if container.Lifecycle != nil && container.Lifecycle.PostStart != nil {
kubeContainerID := kubecontainer.ContainerID{
Type: m.runtimeName,
ID: containerID,
}
// 执行预处理工作
msg, handlerErr := m.runner.Run(kubeContainerID, pod, container, container.Lifecycle.PostStart)
if handlerErr != nil {
m.recordContainerEvent(pod, container, kubeContainerID.ID, v1.EventTypeWarning, events.FailedPostStartHook, msg)
// 如果预处理失败,那么需要kill掉Container
if err := m.killContainer(pod, kubeContainerID, container.Name, "FailedPostStartHook", nil); err != nil {
glog.Errorf("Failed to kill container %q(id=%q) in pod %q: %v, %v",
container.Name, kubeContainerID.String(), format.Pod(pod), ErrPostStartHook, err)
}
return msg, ErrPostStartHook
}
}
return "", nil
}
这个方法还是比较清晰的:
1> 拉取container需要的镜像;
2> 计算一下container重启次数,如果是首次创建,那么应该是0;
3> 生成container config
,用于创建container;
4> 调用CRI接口CreateContainer
来创建container;
5> 在启动之前调用PreStartContainer
做好预处理工作;
6> 调用CRI接口StartContainer
启动container;
7> 调用声明周期中设置的钩子post start
;
至此,一个dispathWork
的Pod创建工作基本完成,当Pods内的每个Pod都用这种方式创建完成,Pods即创建成功。
总结
用网上的一张图总结Pod(s)的创建流程。
References
[1] https://www.cnblogs.com/luozhiyun/p/13736569.html
[2] https://kubernetes.io/docs/concepts/workloads/pods/
[3] Kubelet源码
更多推荐
所有评论(0)