二、泛型的优点

针对早期版本的通用语言运行时和C#语言的局限,泛型提供了一个解决方案。以前类型的泛化(generalization)是靠类型与全局基类System.Object的相互转换来实现。.NET框架基础类库的ArrayList容器类,就是这种局限的一个例子。ArrayList是一个很方便的容器类,使用中无需更改就可以存储任何引用类型或值类型。

 

//The .NET Framework 1.1 way of creating a list

ArrayList list1 = new ArrayList(); 

list1.Add(3);

list1.Add(105);

//...

ArrayList list2 = new ArrayList();

list2.Add(“It is raining in Redmond.”);

list2.Add("It is snowing in the mountains.");

//...

 

但是这种便利是有代价的,这需要把任何一个加入ArrayList的引用类型或值类型都隐式地向上转换成System.Object。如果这些元素是值类型,那么当加入到列表中时,它们必须被装箱;当重新取回它们时,要拆箱。类型转换和装箱、拆箱的操作都降低了性能;在必须迭代(iterate)大容器的情况下,装箱和拆箱的影响可能十分显著。

 

另一个局限是缺乏编译时的类型检查,当一个ArrayList把任何类型都转换为Object,就无法在编译时预防客户代码类似这样的操作:

 

ArrayList list = new ArrayList(); 

//Okay.  

list.Add(3); 

//Okay, but did you really want to do this?

list.Add(.“It is raining in Redmond.”);

 

int t = 0;

//This causes an InvalidCastException to be returned.

    foreach(int x in list)

{

  t += x;

}

 

虽然这样完全合法,并且有时是有意这样创建一个包含不同类型元素的容器,但是把string和int变量放在一个ArrayList中,几乎是在制造错误,而这个错误直到运行的时候才会被发现。

 

在1.0版和1.1版的C#语言中,你只有通过编写自己的特定类型容器,才能避免.NET框架类库的容器类中泛化代码(generalized code)的危险。当然,因为这样的类无法被其他的数据类型复用,也就失去泛型的优点,你必须为每个需要存储的类型重写该类。

 

ArrayList和其他相似的类真正需要的是一种途径,能让客户代码在实例化之前指定所需的特定数据类型。这样就不需要向上类型转换为Object,而且编译器可以同时进行类型检查。换句话说,ArrayList需要一个类型参数。这正是泛型所提供的。在System.Collections.Generic命名空间中的泛型List<T>容器里,同样是把元素加入容器的操作,类似这样:

The .NET Framework 2.0 way of creating a list

List<int> list1 = new List<int>();

//No boxing, no casting:

list1.Add(3);

//Compile-time error:

list1.Add("It is raining in Redmond.");

 

与ArrayList相比,在客户代码中唯一增加的List<T>语法是声明和实例化中的类型参数。代码略微复杂的回报是,你创建的表不仅比ArrayList更安全,而且明显地更加快速,尤其当表中的元素是值类型的时候。


三、泛型类型参数

   

    在泛型类型或泛型方法的定义中,类型参数是一个占位符(placeholder),通常为一个大写字母,如T。在客户代码声明、实例化该类型的变量时,把T替换为客户代码所指定的数据类型。泛型类,如泛型概述中给出的MyList<T>类,不能用作as-is,原因在于它不是一个真正的类型,而更像是一个类型的蓝图。要使用MyList<T>,客户代码必须在尖括号内指定一个类型参数,来声明并实例化一个已构造类型(constructed type)。这个特定类的类型参数可以是编译器识别的任何类型。可以创建任意数量的已构造类型实例,每个使用不同的类型参数,如下:

 

MyList<MyClass> list1  = new MyList<MyClass>();

MyList<float> list2 = new MyList<float>();

MyList<SomeStruct> list3 = new MyList<SomeStruct>();

 

    在这些MyList<T>的实例中,类中出现的每个T都将在运行的时候被类型参数所取代。依靠这样的替换,我们仅用定义类的代码,就创建了三个独立的类型安全且高效的对象。有关CLR执行替换的详细信息,请参见运行时中的泛型。


四、类型参数的约束

 

若要检查表中的一个元素,以确定它是否合法或是否可以与其他元素相比较,那么编译器必须保证:客户代码中可能出现的所有类型参数,都要支持所需调用的操作或方法。这种保证是通过在泛型类的定义中,应用一个或多个约束而得到的。一个约束类型是一种基类约束,它通知编译器,只有这个类型的对象或从这个类型派生的对象,可被用作类型参数。一旦编译器得到这样的保证,它就允许在泛型类中调用这个类型的方法。上下文关键字where用以实现约束。下面的示例代码说明了应用基类约束,为MyList<T>类增加功能。

 

public class Employee

{

 public class Employee

    {

        private string name;

        private int id;

        public Employee(string s, int i)

        {

            name = s;

            id = i;

        }

 

        public string Name

        {

            get { return name; }

            set { name = value; }

        }

        public int ID

        {

            get { return id; }

            set { id = value; }

        }

 

    }

}

class MyList<T> where T: Employee

{

 //Rest of class as before.

  public T FindFirstOccurrence(string s)

  {

   T t = null;

   Reset();

   while (HasItems())

   {

      if (current != null)

      {

//The constraint enables this:

         if (current.Data.Name == s)

         {

            t = current.Data;

            break;

         }

         else

         {

            current = current.Next;

         }

      } //end if

   } // end while

  return t;

  }

}

 

约束使得泛型类能够使用Employee.Name属性,因为所有为类型T的元素,都是一个Employee对象或是一个继承自Employee的对象。

 

同一个类型参数可应用多个约束。约束自身也可以是泛型类,如下:

 

class MyList<T> where T: Employee, IEmployee,  IComparable<T>,  new()

{…}

 

    下表列出了五类约束:

约束

描述

where T: struct

类型参数必须为值类型。

where T : class

类型参数必须为类型。

where T : new()

类型参数必须有一个公有、无参的构造函数。当于其它约束联合使用时,new()约束必须放在最后。

where T : <base class name>

类型参数必须是指定的基类型或是派生自指定的基类型。

where T : <interface name>

类型参数必须是指定的接口或是指定接口的实现。可以指定多个接口约束。接口约束也可以是泛型的。

 

 

类型参数的约束,增加了可调用的操作和方法的数量。这些操作和方法受约束类型及其派生层次中的类型的支持。因此,设计泛型类或方法时,如果对泛型成员执行任何赋值以外的操作,或者是调用System.Object中所没有的方法,就需要在类型参数上使用约束。

 

无限制类型参数的一般用法

没有约束的类型参数,如公有类MyClass<T>{...}中的T, 被称为无限制类型参数(unbounded type parameters)。无限制类型参数有以下规则:

l        不能使用运算符 != 和 == ,因为无法保证具体的类型参数能够支持这些运算符。

l        它们可以与System.Object相互转换,也可显式地转换成任何接口类型。

l        可以与null比较。如果一个无限制类型参数与null比较,当此类型参数为值类型时,比较的结果总为false。

 

 

无类型约束

当约束是一个泛型类型参数时,它就叫无类型约束(Naked type constraints)。当一个有类型参数成员方法,要把它的参数约束为其所在类的类型参数时,无类型约束很有用。如下例所示:

 

class List<T>

{

      //...

    void Add<U>(List<U> items) where U:T {…}

}

 

在上面的示例中, Add方法的上下文中的T,就是一个无类型约束;而List类的上下文中的T,则是一个无限制类型参数。

 

无类型约束也可以用在泛型类的定义中。注意,无类型约束一定也要和其它类型参数一起在尖括号中声明:

//naked type constraint

public class MyClass<T,U,V> where T : V

 

因为编译器只认为无类型约束是从System.Object继承而来,所以带有无类型约束的泛型类的用途十分有限。当你希望强制两个类型参数具有继承关系时,可对泛型类使用无类型约束。


五、泛型类

 

 

泛型类封装了不针对任何特定数据类型的操作。泛型类常用于容器类,如链表、哈希表、栈、队列、树等等。这些类中的操作,如对容器添加、删除元素,不论所存储的数据是何种类型,都执行几乎同样的操作。

 

对大多数情况,推荐使用.NET框架2.0类库中所提供的容器类。有关使用这些类的详细信息,请参见基础类库中的泛型。

 

通常,从一个已有的具体类来创建泛型类,并每次把一个类型改为类型参数,直至达到一般性和可用性的最佳平衡。当创建你自己的泛型类时,需要重点考虑的事项有:

l        哪些类型应泛化为类型参数。一般的规律是,用参数表示的类型越多,代码的灵活性和复用性也就越大。过多的泛化会导致代码难以被其它的开发人员理解。

l        如果有约束,那么类型参数需要什么样约束。一个良好的习惯是,尽可能使用最大的约束,同时保证可以处理所有需要处理的类型。例如,如果你知道你的泛型类只打算使用引用类型,那么就应用这个类的约束。这样可以防止无意中使用值类型,同时可以对T使用as运算符,并且检查空引用。

l        把泛型行为放在基类中还是子类中。泛型类可以做基类。同样非泛型类的设计中也应考虑这一点。泛型基类的继承规则     。

l        是否实现一个或多个泛型接口。例如,要设计一个在基于泛型的容器中创建元素的类,可能需要实现类似IComparable<T>的接口,其中T是该类的参数。

 

泛型概述中有一个简单泛型类的例子。

 

类型参数和约束的规则对于泛型类的行为(behavior)有一些潜在的影响,——尤其是对于继承和成员可访问性。在说明这个问题前,理解一些术语十分重要。对于一个泛型类Node<T>,客户代码既可以通过指定一个类型参数来创建一个封闭构造类型(Node<int>),也可以保留类型参数未指定,例如指定一个泛型基类来创建开放构造类型(Node<T>)。泛型类可以继承自具体类、封闭构造类型或开放构造类型:

 

// concrete type

class Node<T> : BaseNode

//closed constructed type

class Node<T> : BaseNode<int>

//open constructed type

class Node<T> : BaseNode<T>

 

非泛型的具体类可以继承自封闭构造基类,但不能继承自开放构造基类。这是因为客户代码无法提供基类所需的类型参数。

 

//No error.

class Node : BaseNode<int>

//Generates an error.

class Node : BaseNode<T>

 

泛型的具体类可以继承自开放构造类型。除了与子类共用的类型参数外,必须为所有的类型参数指定类型,如下代码所示:

//Generates an error.

class Node<T> : BaseNode<T, U> {…}

//Okay.

class Node<T> : BaseNode<T, int>{…}

 

继承自开放结构类型的泛型类,必须指定:

Generic classes that inherit from open constructed types must specify must specify constraints that are a superset of, or imply, the constraints on the base type:

 

class NodeItem<T> where T : IComparable<T>, new() {…}

class MyNodeItem<T> : NodeItem<T> where T : IComparable<T> , new(){…}

 

 

泛型类型可以使用多种类型参数和约束,如下:

class KeyType<K,V>{…}

class SuperKeyType<K,V,U> where U : IComparable<U>, where V : new(){…}

 

开放结构和封闭构造类型型可以用作方法的参数:

void Swap<T>(List<T> list1, List<T> list2){…}

void Swap(List<int> list1, List<int> list2){…}


六、泛型接口

不论是为泛型容器类,还是表示容器中元素的泛型类,定义接口是很有用的。把泛型接口与泛型类结合使用是更好的用法,比如用IComparable<T>而非IComparable,以避免值类型上的装箱和拆箱操作。.NET框架2.0类库定义了几个新的泛型接口,以配合System.Collections.Generic中新容器类的使用。

 

    当一个接口被指定为类型参数的约束时,只有实现该接口的类型可被用作类型参数。下面的示例代码显示了一个从MyList<T>派生的SortedList<T>类。更多信息,请参见泛型概述。SortedList<T>增加了约束where T : IComparable<T>。

这使得SortedList<T>中的BubbleSort方法可以使用表中的元素的IComparable<T>.CompareTo方法。在这个例子中,表中的元素是简单类——实现IComparable<Person>的Person类。

 

using System;

using System.Collections.Generic;

 

//Type parameter T in angle brackets.

public class MyList<T>

{

    protected Node head;

    protected Node current = null;

 

// Nested type is also generic on T

    protected class Node         

    {

        public Node next;

//T as private member datatype.

        private T data;         

//T used in non-generic constructor.

        public Node(T t)        

        {

            next = null;

            data = t;

        }

        public Node Next

        {

            get { return next; }

            set { next = value; }

        }

//T as return type of property.

        public T Data           

        {

            get { return data; }

            set { data = value; }

        }

    }

    public MyList()

    {

        head = null;

    }

//T as method parameter type.

    public void AddHead(T t)    

    {

        Node n = new Node(t);

        n.Next = head;

        head = n;   

    }

    // Implement IEnumerator<T> to enable foreach

    // iteration of our list. Note that in C# 2.0

    // you are not required to implment Current and

    // GetNext. The compiler does that for you.

    public IEnumerator<T> GetEnumerator()

    {

        Node current = head;

 

        while (current != null)

        {

            yield return current.Data;

            current = current.Next;

        }

    }

}

 

 

public class SortedList<T> : MyList<T> where T : IComparable<T>

{

    // A simple, unoptimized sort algorithm that

    // orders list elements from lowest to highest:

 

public void BubbleSort()

    {

 

        if (null == head || null == head.Next)

            return;

        bool swapped;

 

        do

        {

            Node previous = null;

            Node current = head;

            swapped = false;

 

            while (current.next != null)

            {

                //  Because we need to call this method, the SortedList

                //  class is constrained on IEnumerable<T>

                if (current.Data.CompareTo(current.next.Data) > 0)

                {

                    Node tmp = current.next;

                    current.next = current.next.next;

                    tmp.next = current;

 

                    if (previous == null)

                    {

                        head = tmp;

                    }

                    else

                    {

                        previous.next = tmp;

                    }

                    previous = tmp;

                    swapped = true;

                }

 

                else

                {

                    previous = current;

                    current = current.next;

                }

 

            }// end while

        } while (swapped);

    }

 

}

 

// A simple class that implements IComparable<T>

// using itself as the type argument. This is a

// common design pattern in objects that are

// stored in generic lists.

public class Person : IComparable<Person>

{

    string name;

    int age;

    public Person(string s, int i)

    {

        name = s;

        age = i;

    }

    // This will cause list elements

    // to be sorted on age values.

    public int CompareTo(Person p)

    {

        return age - p.age;

    }

    public override string ToString()

    {

        return name + ":" + age;

    }

    // Must implement Equals.

    public bool Equals(Person p)

    {

        return (this.age == p.age);

    }

}

 

class Program

{

    static void Main(string[] args)

    {

        //Declare and instantiate a new generic SortedList class.

        //Person is the type argument.

        SortedList<Person> list = new SortedList<Person>();

 

        //Create name and age values to initialize Person objects.

        string[] names = new string[]{"Franscoise", "Bill", "Li", "Sandra", "Gunnar", "Alok", "Hiroyuki", "Maria", "Alessandro", "Raul"};

        int[] ages = new int[]{45, 19, 28, 23, 18, 9, 108, 72, 30, 35};

 

        //Populate the list.

        for (int x = 0; x < 10; x++)

        {

            list.AddHead(new Person(names[x], ages[x]));

        }

        //Print out unsorted list.

        foreach (Person p in list)

        {

            Console.WriteLine(p.ToString());

        }

 

        //Sort the list.

        list.BubbleSort();

 

        //Print out sorted list.

        foreach (Person p in list)

        {

            Console.WriteLine(p.ToString());

        }

 

        Console.WriteLine("Done");

    }

}

 

 

可以在一个类型指定多个接口作为约束,如下:

 

class Stack<T> where T : IComparable<T>, IMyStack1<T>{}

 

 

一个接口可以定义多个类型参数,如下:

 

IDictionary<K,V>

 

接口和类的继承规则相同:

//Okay.

IMyInterface : IBaseInterface<int>

//Okay.

IMyInterface<T> : IBaseInterface<T>

 

//Okay.

IMyInterface<T>: IBaseInterface<int>

//Error.

IMyInterface<T> : IBaseInterface2<T, U>

 

具体类可以实现封闭构造接口,如下:

class MyClass : IBaseInterface<string>

 

泛型类可以实现泛型接口或封闭构造接口,只要类的参数列表提供了接口需要的所有参数,如下:

//Okay.

class MyClass<T> : IBaseInterface<T>

//Okay.

class MyClass<T> : IBaseInterface<T, string>

 

泛型类、泛型结构,泛型接口都具有同样方法重载的规则。详细信息,请参见泛型方法。


七、泛型方法

 

泛型方法是声名了类型参数的方法,如下:

 

void Swap<T>( ref T lhs, ref T rhs)

{

  T temp;

  temp = lhs;

  lhs = rhs;

  rhs = temp;

}

 

 

下面的示例代码显示了一个以int作为类型参数,来调用方法的例子:

 

int a = 1;

int b = 2;

//…

Swap<int>(a, b);

 

也可以忽略类型参数,编译器会去推断它。下面调用Swap的代码与上面的例子等价:

Swap(a, b);

 

 

静态方法和实例方法有着同样的类型推断规则。编译器能够根据传入的方法参数来推断类型参数;而无法单独根据约束或返回值来判断。因此类型推断对没有参数的方法是无效的。类型推断发生在编译的时候,且在编译器解析重载方法标志之前。编译器对所有同名的泛型方法应用类型推断逻辑。在决定(resolution)重载的阶段,编译器只包含那些类型推断成功的泛型类。更多信息,请参见C# 2.0规范,20.6.4类型参数推断

 

在泛型方法中,非泛型方法能访问所在类中的类型参数,如下:

class MyClass<T>

{

  //…

  void Swap (ref T lhs, ref T rhs){…}

}

 

不能[JX1] 定义一个泛型方法,和其所在的类具有相同的类型参数;试图这样做,编译器会产生警告CS0693。

 

class MyList<T>

{

// CS0693

    void MyMethod<T>{...}   

}

 

class MyList<T>

{

//This is okay, but not common.

    void SomeMethod<U>(){...}   

}

 

使用约束可以在方法中使用更多的类型参数的特定方法。这个版本的Swap<T>称为SwapIfGreater<T>,它只能使用实现了IComparable<T>的类型参数。

void SwapIfGreater<T>( ref T lhs, ref T rhs) where T: IComparable<T>

{

  T temp;

  if(lhs.CompareTo(rhs) > 0)

    {

      temp = lhs;

      lhs = rhs;

      rhs = temp;

    }

}

 

泛型方法通过多个类型参数来重载。例如,下面的这些方法可以放在同一个类中:

void DoSomething(){}

void DoSomething<T>(){}

void DoSomething<T,U>(){}

 


八、泛型委托

无论是在类定义内还是类定义外,委托可以定义自己的类型参数。引用泛型委托的代码可以指定类型参数来创建一个封闭构造类型,这和实例化泛型类或调用泛型方法一样,如下例所示:

 

public delegate void MyDelegate<T>(T item);

public void Notify(int i){}

//...

 

MyDelegate<int> m = new MyDelegate<int>(Notify);

 

C#2.0版有个新特性称为方法组转换(method group conversion),具体代理和泛型代理类型都可以使用。用方法组转换可以把上面一行写做简化语法:

MyDelegate<int> m = Notify;

 

在泛型类中定义的委托,可以与类的方法一样地使用泛型类的类型参数。

 

class Stack<T>

{

T[] items;

      int index

//...

public delegate void StackDelegate(T[] items);

}

 

引用委托的代码必须要指定所在类的类型参数,如下:

 

Stack<float> s = new Stack<float>();

Stack<float>.StackDelegate myDelegate = StackNotify;

 

 

泛型委托在定义基于典型设计模式的事件时特别有用。因为sender具有强壮的类型[JX2] ,而再也不用与Object相互转换。

 

public void StackEventHandler<T,U>(T sender, U eventArgs);

class Stack<T>

{

    //…

    public class StackEventArgs : EventArgs{...}

    public event StackEventHandler<Stack<T>, StackEventArgs> stackEvent;

    protected virtual void OnStackChanged(StackEventArgs a)

    {

      stackEvent(this, a);

    }

}

class MyClass

{

  public static void HandleStackChange<T>(Stack<T> stack, StackEventArgs args){...};

}

Stack<double> s = new Stack<double>();

MyClass mc = new MyClass();

s.StackEventHandler += mc.HandleStackChange;

 


九、泛型代码中的default关键字

 

在泛型类和泛型方法中会出现的一个问题是,如何把缺省值赋给参数化类型,此时无法预先知道以下两点:

l        T将是值类型还是引用类型

l        如果T是值类型,那么T将是数值还是结构

 

对于一个参数化类型T的变量t,仅当T是引用类型时,t = null语句才是合法的; t = 0只对数值的有效,而对结构则不行。这个问题的解决办法是用default关键字,它对引用类型返回空,对值类型的数值型返回零。而对于结构,它将返回结构每个成员,并根据成员是值类型还是引用类型,返回零或空。下面MyList<T>类的例子显示了如何使用default关键字。更多信息,请参见泛型概述。

 

public class MyList<T>

{

    //...

        public T GetNext()

        {

            T temp = default(T);

            if (current != null)

            {

                temp = current.Data;

                current = current.Next;

            }

            return temp;

        }

}


十、C++模板和C#泛型的区别

(未翻译)

 

C# Generics and C++ templates are both language features that provide support for parameterized types. However, there are many differences between the two. At the syntax level, C# generics are a simpler approach to parameterized types without the complexity of C++ templates. In addition, C# does not attempt to provide all of the functionality that C++ templates provide. At the implementation level, the primary difference is that C# generic type substitutions are performed at runtime and generic type information is thereby preserved for instantiated objects. For more information, see Generics in the Runtime.

 

The following are the key differences between C# Generics and C++ templates:

·                     C# generics do not provide the same amount of flexibility as C++ templates. For example, it is not possible to call arithmetic operators in a C# generic class, although it is possible to call user defined operators.

·                     C# does not allow non-type template parameters, such as template C<int i> {}.

·                     C# does not support explicit specialization; that is, a custom implementation of a template for a specific type.

·                     C# does not support partial specialization: a custom implementation for a subset of the type arguments.

·                     C# does not allow the type parameter to be used as the base class for the generic type.

·                     C# does not allow type parameters to have default types.

·                     In C#, a generic type parameter cannot itself be a generic, although constructed types can be used as generics. C++ does allow template parameters.

·                     C++ allows code that might not be valid for all type parameters in the template, which is then checked for the specific type used as the type parameter. C# requires code in a class to be written in such a way that it will work with any type that satisfies the constraints. For example, in C++ it is possible to write a function that uses the arithmetic operators + and - on objects of the type parameter, which will produce an error at the time of instantiation of the template with a type that does not support these operators. C# disallows this; the only language constructs allowed are those that can be deduced from the constraints.


十一、运行时中的泛型

Specialized generic types are created once for each unique value type used as a parameter.

 

当泛型类或泛型方法被编译为微软中间语言(MSIL)后,它所包含的元数据定义了它的类型参数。根据所给的类型参数是值类型还是引用类型,对泛型类型所用的MSIL也是不同的。

    当第一次以值类型作为参数来构造一个泛型类型,运行时用所提供的参数或在MSIL中适当位置被替换的参数,来创建一个专用的泛型类型。运行时会为每个唯一的作为参数的值类型创建一个的专用泛型类型。[JX3] 

 

    例如,假设你的程序代码声名一个由整型构成的栈,如:

 

Stack<int> stack;

 

此时,运行时用整型恰当地替换了它的类型参数,生成一个专用版本的栈。此后,程序代码再用到整型栈时,运行时复用已创建的专用的栈。下面的例子创建了两个整型栈的实例,它们共用一个Stack<int>代码实例:

 

Stack<int> stackOne = new Stack<int>();

Stack<int> stackTwo = new Stack<int>();

 

    然而,如果由另一种值类型——如长整型或用户自定义的结构——作为参数,在代码的其他地方创建另一个栈,那么运行时会生成另一个版本的泛型类型。这次是把长整型替换到MSIL中的适当的位置。由于每个专用泛型类原本就包含值类型,因此不需要再转换。

 

    对于引用类型,泛型的工作略有不同。当第一次用任何引用类型构造泛型类时,运行时在MSIL中创建一个专用泛型类,其中的参数被对象引用所替换。之后,每当用一个引用类型作为参数来实例化一个已构造类型时,就忽略其类型,运行时复用先前创建的专用版本的泛型类。这可能是由于所有的引用的大小都相同。

 

    例如,假如你有两个引用类型,一个Customer类和一个Order类;进一步假设你创建了一个Customer的栈:

 

Stack<Customer> customers;

 

    此时,运行时生成一个专用版本的栈,用于稍后存储对象的引用,而不是存储数据。假如下一行代码创建了一个另一种引用类型的栈,名为Order:

 

Stack<Order> orders = new Stack<Order>();

 

    和值类型不同,运行时并没有为Order类型创建另一个栈的专用版本。相反,运行时创建了一个专用版本栈实例,并且变量orders指向这个实例。如果之后是一行创建Customer类型的栈的代码:

 

customers = new Stack<Customer>();

 

和之前以Order类型创建的栈一样,创建了专用栈的另一个实例,并且其中所包含的指针指向一块大小与Customer类一致的内存。由于不同程序间引用类型的数量差别很大,而编译器只为引用类型的泛型类创建一个专用类,因此C#对泛型的实现极大地降低了代码膨胀。

    此外,当用类型参数实现一个泛型C#类时,想知道它是指类型还是引用类型,可以在运行时通过反射确定它的真实类型和它的类型参数。

 

 


Logo

权威|前沿|技术|干货|国内首个API全生命周期开发者社区

更多推荐