spark从hbase读取写入数据
将RDD写入hbase注意点:依赖:将lib目录下的hadoop开头jar包、hbase开头jar包添加至classpath此外还有lib目录下的:zookeeper-3.4.6.jar、metrics-core-2.2.0.jar(缺少会提示hbase RpcRetryingCaller: Call exception不断尝试重连hbase,不报错)、htrace-core-3.1...
将RDD写入hbase
注意点:
依赖:
将lib目录下的hadoop开头jar包、hbase开头jar包添加至classpath
此外还有lib目录下的:zookeeper-3.4.6.jar、metrics-core-2.2.0.jar(缺少会提示hbase RpcRetryingCaller: Call exception不断尝试重连hbase,不报错)、htrace-core-3.1.0-incubating.jar、guava-12.0.1.jar
$SPARK_HOME/lib目录下的 spark-assembly-1.6.1-hadoop2.4.0.jar
不同的package中可能会有相同名称的类,不要导错
连接集群:
spark应用需要连接到zookeeper集群,然后借助zookeeper访问hbase。一般可以通过两种方式连接到zookeeper:
第一种是将hbase-site.xml文件加入classpath
第二种是在HBaseConfiguration实例中设置
如果不设置,默认连接的是localhost:2181会报错:connection refused
本文使用的是第二种方式。
hbase创建表:
虽然可以在spark应用中创建hbase表,但是不建议这样做,最好在hbase shell中创建表,spark写或读数据
使用saveAsHadoopDataset写入数据
package com.test
import org.apache.hadoop.hbase.HBaseConfiguration
import org.apache.hadoop.hbase.client.Put
import org.apache.hadoop.hbase.io.ImmutableBytesWritable
import org.apache.hadoop.hbase.mapred.TableOutputFormat
import org.apache.hadoop.hbase.util.Bytes
import org.apache.hadoop.mapred.JobConf
import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import org.apache.spark.rdd.RDD.rddToPairRDDFunctions
object TestHBase {
def main(args: Array[String]): Unit = {
val sparkConf = new SparkConf().setAppName("HBaseTest").setMaster("local")
val sc = new SparkContext(sparkConf)
val conf = HBaseConfiguration.create()
//设置zooKeeper集群地址,也可以通过将hbase-site.xml导入classpath,但是建议在程序里这样设置
conf.set("hbase.zookeeper.quorum","slave1,slave2,slave3")
//设置zookeeper连接端口,默认2181
conf.set("hbase.zookeeper.property.clientPort", "2181")
val tablename = "account"
//初始化jobconf,TableOutputFormat必须是org.apache.hadoop.hbase.mapred包下的!
val jobConf = new JobConf(conf)
jobConf.setOutputFormat(classOf[TableOutputFormat])
jobConf.set(TableOutputFormat.OUTPUT_TABLE, tablename)
val indataRDD = sc.makeRDD(Array("1,jack,15","2,Lily,16","3,mike,16"))
val rdd = indataRDD.map(_.split(',')).map{arr=>{
/*一个Put对象就是一行记录,在构造方法中指定主键
* 所有插入的数据必须用org.apache.hadoop.hbase.util.Bytes.toBytes方法转换
* Put.add方法接收三个参数:列族,列名,数据
*/
val put = new Put(Bytes.toBytes(arr(0).toInt))
put.add(Bytes.toBytes("cf"),Bytes.toBytes("name"),Bytes.toBytes(arr(1)))
put.add(Bytes.toBytes("cf"),Bytes.toBytes("age"),Bytes.toBytes(arr(2).toInt))
//转化成RDD[(ImmutableBytesWritable,Put)]类型才能调用saveAsHadoopDataset
(new ImmutableBytesWritable, put)
}}
rdd.saveAsHadoopDataset(jobConf)
sc.stop()
}
}
使用saveAsNewAPIHadoopDataset写入数据
package com.test
import org.apache.hadoop.hbase.HBaseConfiguration
import org.apache.hadoop.hbase.mapreduce.TableOutputFormat
import org.apache.spark._
import org.apache.hadoop.mapreduce.Job
import org.apache.hadoop.hbase.io.ImmutableBytesWritable
import org.apache.hadoop.hbase.client.Result
import org.apache.hadoop.hbase.client.Put
import org.apache.hadoop.hbase.util.Bytes
object TestHBase3 {
def main(args: Array[String]): Unit = {
val sparkConf = new SparkConf().setAppName("HBaseTest").setMaster("local")
val sc = new SparkContext(sparkConf)
val tablename = "account"
sc.hadoopConfiguration.set("hbase.zookeeper.quorum","slave1,slave2,slave3")
sc.hadoopConfiguration.set("hbase.zookeeper.property.clientPort", "2181")
sc.hadoopConfiguration.set(TableOutputFormat.OUTPUT_TABLE, tablename)
val job = new Job(sc.hadoopConfiguration)
job.setOutputKeyClass(classOf[ImmutableBytesWritable])
job.setOutputValueClass(classOf[Result])
job.setOutputFormatClass(classOf[TableOutputFormat[ImmutableBytesWritable]])
val indataRDD = sc.makeRDD(Array("1,jack,15","2,Lily,16","3,mike,16"))
val rdd = indataRDD.map(_.split(',')).map{arr=>{
val put = new Put(Bytes.toBytes(arr(0)))
put.add(Bytes.toBytes("cf"),Bytes.toBytes("name"),Bytes.toBytes(arr(1)))
put.add(Bytes.toBytes("cf"),Bytes.toBytes("age"),Bytes.toBytes(arr(2).toInt))
(new ImmutableBytesWritable, put)
}}
rdd.saveAsNewAPIHadoopDataset(job.getConfiguration())
}
}
从hbase读取数据转化成RDD
本例基于官方提供的例子
package com.test
import org.apache.hadoop.hbase.{HBaseConfiguration, HTableDescriptor, TableName}
import org.apache.hadoop.hbase.client.HBaseAdmin
import org.apache.hadoop.hbase.mapreduce.TableInputFormat
import org.apache.spark._
import org.apache.hadoop.hbase.client.HTable
import org.apache.hadoop.hbase.client.Put
import org.apache.hadoop.hbase.util.Bytes
import org.apache.hadoop.hbase.io.ImmutableBytesWritable
import org.apache.hadoop.hbase.mapreduce.TableOutputFormat
import org.apache.hadoop.mapred.JobConf
import org.apache.hadoop.io._
object TestHBase2 {
def main(args: Array[String]): Unit = {
val sparkConf = new SparkConf().setAppName("HBaseTest").setMaster("local")
val sc = new SparkContext(sparkConf)
val tablename = "account"
val conf = HBaseConfiguration.create()
//设置zooKeeper集群地址,也可以通过将hbase-site.xml导入classpath,但是建议在程序里这样设置
conf.set("hbase.zookeeper.quorum","slave1,slave2,slave3")
//设置zookeeper连接端口,默认2181
conf.set("hbase.zookeeper.property.clientPort", "2181")
conf.set(TableInputFormat.INPUT_TABLE, tablename)
// 如果表不存在则创建表
val admin = new HBaseAdmin(conf)
if (!admin.isTableAvailable(tablename)) {
val tableDesc = new HTableDescriptor(TableName.valueOf(tablename))
admin.createTable(tableDesc)
}
//读取数据并转化成rdd
val hBaseRDD = sc.newAPIHadoopRDD(conf, classOf[TableInputFormat],
classOf[org.apache.hadoop.hbase.io.ImmutableBytesWritable],
classOf[org.apache.hadoop.hbase.client.Result])
val count = hBaseRDD.count()
println(count)
hBaseRDD.foreach{case (_,result) =>{
//获取行键
val key = Bytes.toString(result.getRow)
//通过列族和列名获取列
val name = Bytes.toString(result.getValue("cf".getBytes,"name".getBytes))
val age = Bytes.toInt(result.getValue("cf".getBytes,"age".getBytes))
println("Row key:"+key+" Name:"+name+" Age:"+age)
}}
sc.stop()
admin.close()
}
}
更多推荐
所有评论(0)