教程 读取、修改、保存图像 已经讲解了如何使用函数 imwrite() 将一个矩阵写入图像文件中。但是为了debug,更加方便的方式是看实际值。为此,你可以通过 Mat 的运算符 << 来实现,但要记住这只对二维矩阵有效。

Mat 不但是一个很赞的图像容器类,它同时也是一个通用的矩阵类,所以可以用来创建和操作多维矩阵。创建一个Mat对象有多种方法:

矩阵。创建一个Mat对象有多种方法:
  • Mat() 构造函数

        Mat M(2,2, CV_8UC3, Scalar(0,0,255)); 
        cout << "M = " << endl << " " << M << endl << endl;   
    
Demo image of the matrix output

对于二维多通道图像,首先要定义其尺寸,即行数和列数。

然后,需要指定存储元素的数据类型以及每个矩阵点的通道数。为此,依据下面的规则有多种定义

CV_[The number of bits per item][Signed or Unsigned][Type Prefix]C[The channel number]

比如 CV_8UC3 表示使用8位的 unsigned char 型,每个像素由三个元素组成三通道。预先定义的通道数可以多达四个。 Scalar 是个short型vector。指定这个能够使用指定的定制化值来初始化矩阵。当然,如果你需要更多通道数,你可以使用大写的宏并把通道数放在小括号中。

  • 在 C\C++ 中通过构造函数进行初始化

        int sz[3] = {2,2,2}; 
        Mat L(3,sz, CV_8UC(1), Scalar::all(0));
    

    上面的例子演示了如何创建一个超过两维的矩阵:指定维数,然后传递一个指向一个数组的指针,这个数组包含每个维度的尺寸;其余的相同

  • 为已存在IplImage指针创建信息头:

    IplImage* img = cvLoadImage("greatwave.png", 1);
    Mat mtx(img); // convert IplImage* -> Mat
    
  • Create() function: 函数

        M.create(4,4, CV_8UC(2));
        cout << "M = "<< endl << " "  << M << endl << endl;
    

  • Create() function: 函数

        M.create(4,4, CV_8UC(2));
        cout << "M = "<< endl << " "  << M << endl << endl;
    


  • MATLAB形式的初始化方式: zeros(), ones(), :eyes() 。使用以下方式指定尺寸和数据类型:

        Mat E = Mat::eye(4, 4, CV_64F);    
        cout << "E = " << endl << " " << E << endl << endl;
        
        Mat O = Mat::ones(2, 2, CV_32F);    
        cout << "O = " << endl << " " << O << endl << endl;
    
        Mat Z = Mat::zeros(3,3, CV_8UC1);
        cout << "Z = " << endl << " " << Z << endl << endl;
    

  • 对于小矩阵你可以用逗号分隔的初始化函数:

        Mat C = (Mat_<double>(3,3) << 0, -1, 0, -1, 5, -1, 0, -1, 0); 
        cout << "C = " << endl << " " << C << endl << endl;
    

使用 clone() 或者 copyTo() 为一个存在的 Mat 对象创建一个新的信息头。

    Mat RowClone = C.row(1).clone();
    cout << "RowClone = " << endl << " " << RowClone << endl << endl;

Note

调用函数 randu() 来对一个矩阵使用随机数填充,需要指定随机数的上界和下界:

    Mat R = Mat(3, 2, CV_8UC3);
    randu(R, Scalar::all(0), Scalar::all(255));

从上面的例子中可以看到默认格式,除此之外,OpenCV还支持以下的输出习惯

默认方式

    cout << "R (default) = " << endl <<        R           << endl << endl;

Python

    cout << "R (python)  = " << endl << format(R,"python") << endl << endl;

以逗号分隔的数值 (CSV)

    cout << "R (csv)     = " << endl << format(R,"csv"   ) << endl << endl;

Numpy

    cout << "R (numpy)   = " << endl << format(R,"numpy" ) << endl << endl;

C语言

    cout << "R (c)       = " << endl << format(R,"C"     ) << endl << endl;


打印其它常用项目

OpenCV支持使用运算符<<来打印其它常用OpenCV数据结构。

2维点

    Point2f P(5, 1);
    cout << "Point (2D) = " << P << endl << endl;

3维点

    Point3f P3f(2, 6, 7);
    cout << "Point (3D) = " << P3f << endl << endl;


基于cv::Mat的std::vector

    vector<float> v;
    v.push_back( (float)CV_PI);   v.push_back(2);    v.push_back(3.01f);
    
    cout << "Vector of floats via Mat = " << Mat(v) << endl << endl;

std::vector点

    vector<Point2f> vPoints(20);
    for (size_t E = 0; E < vPoints.size(); ++E)
        vPoints[E] = Point2f((float)(E * 5), (float)(E % 7));

    cout << "A vector of 2D Points = " << vPoints << endl << endl;


测试代码:

#include "stdafx.h"
#include "opencv2\core\core.hpp"
#include <iostream>

using namespace std;
using namespace cv;

void help()
{
    cout
	<< "\n--------------------------------------------------------------------------" << endl
    << "This program shows how to create matrices(cv::Mat) in OpenCV and its serial"  << endl
    << "out capabilities"                                                            << endl
    << "That is, cv::Mat M(...); M.create and cout << M. "                            << endl
    << "Shows how output can be formated to OpenCV, python, numpy, csv and C styles." << endl
    << "Usage:"                                                                       << endl
    << "./cvout_sample"                                                               << endl
    << "--------------------------------------------------------------------------"   << endl 
    << endl;
}

int _tmain(int argc, _TCHAR* argv[])
{
    help();    
    // create by using the constructor
	Mat M1(2,2, CV_8UC1, Scalar(255,200,122)); 
    cout<< "CV8UC1_M1 = " << endl << " " << M1 << endl << endl;
	Mat M2(2,2, CV_8UC2, Scalar(255,200,122)); 
    cout<< "CV8UC2_M2 = " << endl << " " << M2 << endl << endl;
	Mat M(2,2, CV_8UC3, Scalar(255,200,122)); 
    cout<< "CV8UC3_M3 = " << endl << " " << M << endl << endl;

    // create by using the create function()
    M.create(4,4, CV_8UC(2));
    cout << "M = "<< endl << " "  << M << endl << endl;

    // create multidimensional matrices
    int sz[3] = {2,2,2}; 
    Mat L(3,sz, CV_8UC(1), Scalar::all(0));
    // Cannot print via operator <<

    // Create using MATLAB style eye, ones or zero matrix
    Mat E = Mat::eye(4, 4, CV_64F);    
    cout << "E = " << endl << " " << E << endl << endl;
    
    Mat O = Mat::ones(2, 2, CV_32F);    
    cout << "O = " << endl << " " << O << endl << endl;

    Mat Z = Mat::zeros(3,3, CV_8UC1);
    cout << "Z = " << endl << " " << Z << endl << endl;
    
    // create a 3x3 double-precision identity matrix
    Mat C = (Mat_<double>(3,3) << 0, -1, 0, -1, 5, -1, 0, -1, 0); 
    cout << "C = " << endl << " " << C << endl << endl;

    Mat RowClone = C.row(1).clone();
    cout << "RowClone = " << endl << " " << RowClone << endl << endl;

    // Fill a matrix with random values
    Mat R = Mat(3, 2, CV_8UC3);
    randu(R, Scalar::all(0), Scalar::all(255));

    // Demonstrate the output formating options
    cout << "R (default) = " << endl <<        R           << endl << endl;
    cout << "R (python)  = " << endl << format(R,"python") << endl << endl;
    cout << "R (numpy)   = " << endl << format(R,"numpy" ) << endl << endl;
    cout << "R (csv)     = " << endl << format(R,"csv"   ) << endl << endl;
    cout << "R (c)       = " << endl << format(R,"C"     ) << endl << endl;

    Point2f P(5, 1);
    cout << "Point (2D) = " << P << endl << endl;

    Point3f P3f(2, 6, 7);
    cout << "Point (3D) = " << P3f << endl << endl;


    vector<float> v;
    v.push_back( (float)CV_PI);   v.push_back(2);    v.push_back(3.01f);
    
    cout << "Vector of floats via Mat = " << Mat(v) << endl << endl;
        
    vector<Point2f> vPoints(20);
    for (size_t E = 0; E < vPoints.size(); ++E)
        vPoints[E] = Point2f((float)(E * 5), (float)(E % 7));

    cout<< "A vector of 2D Points = " << vPoints << endl << endl;
    return 0;
}

输出结果:



关于Image Engineering & Computer Vision的更多讨论与交流,敬请关注本博客和新浪微博songzi_tea.

Logo

权威|前沿|技术|干货|国内首个API全生命周期开发者社区

更多推荐