一,机器学习常用性能指标总结

(转载并稍作修改和补充)

在机器学习中,性能指标(Metrics)是衡量一个模型好坏的关键,通过衡量模型输出y_predict 和 y_true之间的某种"距离"得出的。

性能指标往往是我们做模型时的最终目标,如准确率,召回率,敏感度等等,但是性能指标常常因为不可微分,无法作为优化的loss函数,因此采用如cross-entropy, rmse等“距离”可微函数作为优化目标,以期待在loss函数降低的时候,能够提高性能指标。而最终目标的性能指标则作为模型训练过程中,作为验证集做决定(early stoping或model selection)的主要依据,与训练结束后评估本次训练出的模型好坏的重要标准。

在机器学习的比赛中,有部分比赛也是用metrics作为排名的依据(当然也有使用loss排名)。

性能指标的分类

性能指标根据问题不同,主要分为:

  • 回归类性能指标
  • 分类性能指标

回归类性能指标,如RMSE,MSE等。

二分类性能指标(最经常使用)

首先一说到二分类性能指标,一般都会祭出混淆矩阵,我们这里给出混淆矩阵:

 预测1预测0合计
实际1(P)TPFNTP+FN(P)
实际0(N)FPTNFP+TN(N)
合计TP+FPFN+TNTP+FN+FP+TN

这里解释一下上面列联表的意思:
T/F表示预测是否正确,P/N表示 预测的label而不是实际的label

好了有了列联表就可以使用数学公式描述各个Metrics的含义了

准确率(Accuracy):

准确率是使用的最普遍的,也是最直观的性能指标,其定义如下:

\frac{TP+TN}{TP+FN+FP+TN}

意义是预测正确的sample占所有sample的比例,表示了一个分类器的区分能力,注意,这里的区分能力没有偏向于是正例还是负例,这也是Accuracy作为性能指标最大的问题所在

假设是一个地震的分类器,0表示没有地震,1表示地震,由于地震概率非常小(通常是1e-x级别,姑且认为地震的概率是0.0001吧),因此,只要所有的例子来都猜是0,就能够是准确率(Accuracy)达到0.9999,使用Acc看来,这是一个好的分类器,而其实不然。对于地震的分类器,我们关心的是不是所有的正例全都被判别出来,至于一些时候,没有地震时,我们预测为1,只要在可接受范围内,那么,这个分类器就是一个好的分类器。

可以看到,对于数据不平衡或是当某一方数据漏掉(通常是把这样的例子作为正例)时会产生很大的代价的时候,我们需要更有效的指标作为补充。

精确率(Precision):

有时也叫查准率,定义如下:

\frac{TP}{TP+FP}

从定义中可以看出,精确率代表的是:在所有被分类为正例的样本中,真正是正例的比例。简单的来说,

“你说的1有多大概率是1!”, 就是这个道理。

这个指标常常被应用于推荐系统中,对某一个商品,以用户喜欢为1,不喜欢为0,使用查准率进行性能衡量。
在这个问题中,查准率可以理解成“网易云音乐每日推荐的20首歌曲中,我喜欢的歌曲所占的比例”

召回率(Recall):

也被称为查全率,在医学上常常被称作敏感度(Sensitive),定义如下:

\frac{TP}{TP+FN}
召回率的定义是,在所有实际为正例的样本中,被预测为正例的样本比例,简单说就是“总共这么多1,你预测除了多少?

在医学领域(包括刚才说的地震),常把患病(发生地震)这样的高风险类别作为正类,当漏掉正类的代价非常高,像是漏诊可能导致病人的延迟治疗,或是地震了没有预测出来将会产生巨大的人员伤亡时,召回率就派上用场了。

在医学中,必须极力降低漏诊率,而误诊相对于误诊(把负例判为正例)相对于漏诊的重要性就低了很多。

特异性(Specificity):

特异性,定义如下:

SP=\frac{TN}{FP+TN}

特异性的语义为:实际为负的样本中,有多大概率被预测出来,这个定义和召回率非常像,二者区别只是对象不同,召回率是针对正例,而特异性针对的是负例。可以简单把特异性理解成“负例查全率”。
特异性在医疗中也被认为是一个重要指标,为什么呢,因为特异性低也就是“误诊率高”,举一个极端例子,一个分类器把所有的样本都判定成患病,此时敏感度为1,但是有特异性却很低。因此,在医学领域,特异性敏感度是需要同时考量的。

ROC曲线:

ROC曲线的全称叫做Receiver Operating Characteristic,常常被用来判别一个分类器的好坏程度,一下是一个ROC的例子:

上图引用自(http://alexkong.net/2013/06/introduction-to-auc-and-roc/)

首先看一下x轴坐标是False positive rate,即假正例率,其定义如下:

FPR=\frac{FP}{FP+TN}

这个指标乍一看比较奇怪,但是仔细对比一下公式可以发现,FPR=1−SPFPR=1−SP假正例率代表的负例中没有查出来的概率,简单说是“总共有这么多0,分类器没有查出来多少”而没有查出来的,自然就都被分为1了,那么这些0就被误诊了,因此,FPR代表的其实是“误诊率”。

被误诊的人数所有健康的人数被误诊的人数所有健康的人数,就是他想表达的意思。

再看一下y轴是True positive rate真正例率,定义是:

TPR=\frac{TP}{TP+FN}

回头看一下,其实就是敏感度和召回率啦~

ok,现在明白了,ROC的x轴是误诊率,y轴是漏诊率。可是一个分类器只可能得到一个数字,为什么会得出上图画出的那条曲线呢?

原来,画出ROC的曲线的方法不只是计算一次误诊率和漏诊率,按照以下方式进行:
1. 将分类器预测为正例的概率从小到大排序
2. 把每两个样本间的概率作为阈值,小于该阈值的分为负例,大于的分为正例
3. 分别计算TPR和FPR
4. 转2
5. 当所有阈值都被枚举完之后,获得一组(TPR, FPR)的坐标点,将他们画出来。结束

这就是ROC曲线的画法,sklearn中已经对大量以上所说的性能指标做了实现,以下是ROC曲线在sklearn中如何调用

    from sklearn.metrics import roc_curve
    import matplotlib.pyplot as plt
    
    p_rate = model.get_prob(X) #计算分类器把样本分为正例的概率
    fpr, tpr, thresh = roc_curve(y_true, p_rate)
   
    plt.figure(figsize=(5, 5))
    plt.title('ROC Curve')
    plt.xlabel('False Positive Rate')
    plt.ylabel('True Positive Rate')
    plt.grid(True)
    plt.plot(fpr, tpr)
    plt.savefig('roc.png')

二,sklearn中的模型评估-构建评估函数

(转载自http://d0evi1.com/sklearn/model_evaluation/并稍作修改和补充)

1.介绍

有三种不同的方法来评估一个模型的预测质量:

  • estimator的score方法:sklearn中的estimator都具有一个score方法,它提供了一个缺省的评估法则来解决问题。
  • Scoring参数:使用cross-validation的模型评估工具,依赖于内部的scoring策略。见下。
  • Metric函数:metrics模块实现了一些函数,用来评估预测误差。见下。

2. scoring参数

模型选择和评估工具,例如: grid_search.GridSearchCV 和 cross_validation.cross_val_score,使用scoring参数来控制你的estimator的好坏。

2.1 预定义的值

对于大多数case而说,你可以设计一个使用scoring参数的scorer对象;下面展示了所有可能的值。所有的scorer对象都遵循:高得分,更好效果。如果从mean_absolute_error 和mean_squared_error(它计算了模型与数据间的距离)返回的得分将被忽略。

2.2 从metric函数定义你的scoring策略

sklearn.metric提供了一些函数,用来计算真实值与预测值之间的预测误差:

  • 以_score结尾的函数,返回一个最大值,越高越好
  • 以_error结尾的函数,返回一个最小值,越小越好;如果使用make_scorer来创建scorer时,将greater_is_better设为False

接下去会讨论多种机器学习当中的metrics。

许多metrics并没有给出在scoring参数中可配置的字符名,因为有时你可能需要额外的参数,比如:fbeta_score。这种情况下,你需要生成一个合适的scorer对象。最简单的方法是调用make_scorer来生成scoring对象。该函数将metrics转换成在模型评估中可调用的对象。

第一个典型的用例是,将一个库中已经存在的metrics函数进行包装,使用定制参数,比如对fbeta_score函数中的beta参数进行设置:

>>> from sklearn.metrics import fbeta_score, make_scorer
>>> ftwo_scorer = make_scorer(fbeta_score, beta=2)
>>> from sklearn.grid_search import GridSearchCV
>>> from sklearn.svm import LinearSVC
>>> grid = GridSearchCV(LinearSVC(), param_grid={'C': [1, 10]}, scoring=ftwo_scorer)

第二个典型用例是,通过make_scorer构建一个完整的定制scorer函数,该函数可以带有多个参数:

  • 你可以使用python函数:下例中的my_custom_loss_func
  • python函数是否返回一个score(greater_is_better=True),还是返回一个loss(greater_is_better=False)。如果为loss,python函数的输出将被scorer对象忽略,根据交叉验证的原则,得分越高模型越好。
  • 对于分类问题的metrics:如果你提供的python函数是否需要对连续值进行决策判断,可以将参数设置为(needs_threshold=True)。缺省值为False。
  • 一些额外的参数:比如f1_score中的bata或labels。

下例使用定制的scorer,使用了greater_is_better参数:

>>> import numpy as np
>>> def my_custom_loss_func(ground_truth, predictions):
...     diff = np.abs(ground_truth - predictions).max()
...     return np.log(1 + diff)
...

>>> loss  = make_scorer(my_custom_loss_func, greater_is_better=False)
>>> score = make_scorer(my_custom_loss_func, greater_is_better=True)
>>> ground_truth = [[1, 1]]
>>> predictions  = [0, 1]
>>> from sklearn.dummy import DummyClassifier
>>> clf = DummyClassifier(strategy='most_frequent', random_state=0)
>>> clf = clf.fit(ground_truth, predictions)
>>> loss(clf,ground_truth, predictions) 
-0.69...
>>> score(clf,ground_truth, predictions) 
0.69...

2.3 实现你自己的scoring对象

你可以生成更灵活的模型scorer,通过从头构建自己的scoring对象来完成,不需要使用make_scorer工厂函数。对于一个自己实现的scorer来说,它需要遵循两个原则:

  • 必须可以用(estimator, X, y)进行调用
  • 必须返回一个float的值

3. 分类metrics

sklearn.metrics模块实现了一些loss, score以及一些工具函数来计算分类性能。一些metrics可能需要正例、置信度、或二分决策值的的概率估计。大多数实现允许每个sample提供一个对整体score来说带权重的分布,通过sample_weight参数完成。

一些二分类(binary classification)使用的case:

  • matthews_corrcoef(y_true, y_pred)
  • precision_recall_curve(y_true, probas_pred)
  • roc_curve(y_true, y_score[, pos_label, …])

一些多分类(multiclass)使用的case:

  • confusion_matrix(y_true, y_pred[, labels])
  • hinge_loss(y_true, pred_decision[, labels, …])

一些多标签(multilabel)的case:

  • accuracy_score(y_true, y_pred[, normalize, …])
  • classification_report(y_true, y_pred[, …])
  • f1_score(y_true, y_pred[, labels, …])
  • fbeta_score(y_true, y_pred, beta[, labels, …])
  • hamming_loss(y_true, y_pred[, classes])
  • jaccard_similarity_score(y_true, y_pred[, …])
  • log_loss(y_true, y_pred[, eps, normalize, …])
  • precision_recall_fscore_support(y_true, y_pred)
  • precision_score(y_true, y_pred[, labels, …])
  • recall_score(y_true, y_pred[, labels, …])
  • zero_one_loss(y_true, y_pred[, normalize, …])

还有一些可以同时用于二标签和多标签(不是多分类)问题:

  • average_precision_score(y_true, y_score[, …])
  • roc_auc_score(y_true, y_score[, average, …])

在以下的部分,我们将讨论各个函数。

3.1 二分类/多分类/多标签

对于二分类来说,必须定义一些matrics(f1_score,roc_auc_score)。在这些case中,缺省只评估正例的label,缺省的正例label被标为1(可以通过配置pos_label参数来完成)

将一个二分类matrics拓展到多分类或多标签问题时,我们可以将数据看成多个二分类问题的集合,每个类都是一个二分类。接着,我们可以通过跨多个分类计算每个二分类metrics得分的均值,这在一些情况下很有用。你可以使用average参数来指定。

  • macro:计算二分类metrics的均值,为每个类给出相同权重的分值。当小类很重要时会出问题,因为该macro-averging方法是对性能的平均。另一方面,该方法假设所有分类都是一样重要的,因此macro-averaging方法会对小类的性能影响很大。
  • weighted: 对于不均衡数量的类来说,计算二分类metrics的平均,通过在每个类的score上进行加权实现。
  • micro: 给出了每个样本类以及它对整个metrics的贡献的pair(sample-weight),而非对整个类的metrics求和,它会每个类的metrics上的权重及因子进行求和,来计算整个份额。Micro-averaging方法在多标签(multilabel)问题中设置,包含多分类,此时,大类将被忽略。
  • samples:应用在 multilabel问题上。它不会计算每个类,相反,它会在评估数据中,通过计算真实类和预测类的差异的metrics,来求平均(sample_weight-weighted)
  • average:average=None将返回一个数组,它包含了每个类的得分.

多分类(multiclass)数据提供了metric,和二分类类似,是一个label的数组,而多标签(multilabel)数据则返回一个索引矩阵,当样本i具有label j时,元素[i,j]的值为1,否则为0.

3.2 accuracy_score

accuracy_score函数计算了准确率,不管是正确预测的fraction(default),还是count(normalize=False)。

在multilabel分类中,该函数会返回子集的准确率。如果对于一个样本来说,必须严格匹配真实数据集中的label,整个集合的预测标签返回1.0;否则返回0.0.

预测值与真实值的准确率,在n个样本下的计算公式如下:

accuracy(y,\hat{y}) = \frac{1}{n_{samples}} \sum_{i=0}^{n_{samples}-1}l(\hat{y}_i=y_i)

1(x)为指示函数。

>>> import numpy as np
>>> from sklearn.metrics import accuracy_score
>>> y_pred = [0, 2, 1, 3]
>>> y_true = [0, 1, 2, 3]
>>> accuracy_score(y_true, y_pred)
0.5
>>> accuracy_score(y_true, y_pred, normalize=False)
2

在多标签的case下,二分类label:

>>> accuracy_score(np.array([[0, 1], [1, 1]]), np.ones((2, 2)))
0.5

3.3 Cohen’s kappa

函数cohen_kappa_score计算了Cohen’s kappa估计。这意味着需要比较通过不同的人工标注(numan annotators)的标签,而非分类器中正确的类。

kappa score是一个介于(-1, 1)之间的数. score>0.8意味着好的分类;0或更低意味着不好(实际是随机标签)

Kappa score可以用在二分类或多分类问题上,但不适用于多标签问题,以及超过两种标注的问题。

3.4 混淆矩阵

confusion_matrix函数通过计算混淆矩阵,用来计算分类准确率。

缺省的,在混淆矩阵中的i,j指的是观察的数目i,预测为j,示例:

>>> from sklearn.metrics import confusion_matrix
>>> y_true = [2, 0, 2, 2, 0, 1]
>>> y_pred = [0, 0, 2, 2, 0, 2]
>>> confusion_matrix(y_true, y_pred)
array([[2, 0, 0],
       [0, 0, 1],
       [1, 0, 2]])

结果为:

示例:

3.5 分类报告

classification_report函数构建了一个文本报告,用于展示主要的分类metrics。 下例给出了一个小示例,它使用定制的target_names和对应的label:

 
>>> from sklearn.metrics import classification_report
>>> y_true = [0, 1, 2, 2, 0]
>>> y_pred = [0, 0, 2, 2, 0]
>>> target_names = ['class 0', 'class 1', 'class 2']
>>> print(classification_report(y_true, y_pred, target_names=target_names))
             precision    recall  f1-score   support

    class 0       0.67      1.00      0.80         2
    class 1       0.00      0.00      0.00         1
    class 2       1.00      1.00      1.00         2

avg / total       0.67      0.80      0.72         5

示例:

3.6 Hamming loss

hamming_loss计算了在两个样本集里的平均汉明距离或平均Hamming loss。

  • \hat{y}_j是对应第j个label的预测值,
  • y_j是对应的真实值
  • n_\text{labels}是类目数

那么两个样本间的Hamming loss为LHammingLHamming,定义如下:

L_{Hamming}(y, \hat{y}) = \frac{1}{n_\text{labels}} \sum_{j=0}^{n_\text{labels} - 1} 1(\hat{y}_j \not= y_j)

其中:1(x)1(x)为指示函数。

>>> from sklearn.metrics import hamming_loss
>>> y_pred = [1, 2, 3, 4]
>>> y_true = [2, 2, 3, 4]
>>> hamming_loss(y_true, y_pred)
0.25

在多标签(multilabel)的使用二元label指示器的情况:

>>> hamming_loss(np.array([[0, 1], [1, 1]]), np.zeros((2, 2)))
0.75

注意:在多分类问题上,Hamming loss与y_true 和 y_pred 间的Hamming距离相关,它与0-1 loss相类似。然而,0-1 loss会对不严格与真实数据集相匹配的预测集进行惩罚。因而,Hamming loss,作为0-1 loss的上界,也在0和1之间;预测一个合适的真实label的子集或超集将会给出一个介于0和1之间的Hamming loss.

3.7 Jaccard相似度系数score

jaccard_similarity_score函数会计算两对label集之间的Jaccard相似度系数的平均(缺省)或求和。它也被称为Jaccard index.

第i个样本的Jaccard相似度系数(Jaccard similarity coefficient),真实标签集为y_i,预测标签集为:\hat{y}_j,其定义如下:

J(y_i, \hat{y}_i) = \frac{|y_i \cap \hat{y}_i|}{|y_i \cup \hat{y}_i|}.

在二分类和多分类问题上,Jaccard相似度系数score与分类的正确率(accuracy)相同:

>>> import numpy as np
>>> from sklearn.metrics import jaccard_similarity_score
>>> y_pred = [0, 2, 1, 3]
>>> y_true = [0, 1, 2, 3]
>>> jaccard_similarity_score(y_true, y_pred)
0.5
>>> jaccard_similarity_score(y_true, y_pred, normalize=False)
2

在多标签(multilabel)问题上,使用二元标签指示器:

>>> jaccard_similarity_score(np.array([[0, 1], [1, 1]]), np.ones((2, 2)))
0.75

3.8 准确率,召回率与F值

准确率(precision)可以衡量一个样本为负的标签被判成正,召回率(recall)用于衡量所有正例。

F-meature(包括:F_\betaF_1),可以认为是precision和recall的加权调和平均(weighted harmonic mean)。一个F_\beta值,最佳为1,最差时为0. 如果\beta=1,那么F_\betaF_1相等,precision和recall的权重相等。

precision_recall_curve会根据预测值和真实值来计算一条precision-recall典线。

average_precision_score则会预测值的平均准确率(AP: average precision)。该分值对应于precision-recall曲线下的面积。

sklearn提供了一些函数来分析precision, recall and F-measures值:

  • average_precision_score:计算预测值的AP
  • f1_score: 计算F1值,也被称为平衡F-score或F-meature
  • fbeta_score: 计算F-beta score
  • precision_recall_curve:计算不同概率阀值的precision-recall对
  • precision_recall_fscore_support:为每个类计算precision, recall, F-measure 和 support
  • precision_score: 计算precision
  • recall_score: 计算recall

注意:precision_recall_curve只用于二分类中。而average_precision_score可用于二分类或multilabel指示器格式

示例:

3.8.1 二分类

在二元分类中,术语“positive”和“negative”指的是分类器的预测类别(expectation),术语“true”和“false”则指的是预测是否正确(有时也称为:观察observation)。给出如下的定义:

 实际类目(observation) 
预测类目(expectation)TP(true positive)结果:CorrectFP(false postive)结果:Unexpected
 FN(false negative)结果: MissingTN(true negtive)结果:Correct

在这个上下文中,我们定义了precision, recall和F-measure:

\text{precision} = \frac{tp}{tp + fp}

\text{recall} = \frac{tp}{tp + fn}

F_\beta = (1 + \beta^2) \frac{\text{precision} \times \text{recall}}{\beta^2 \text{precision} + \text{recall}}

这里是一个二元分类的示例:

>>> from sklearn import metrics
>>> y_pred = [0, 1, 0, 0]
>>> y_true = [0, 1, 0, 1]
>>> metrics.precision_score(y_true, y_pred)
1.0
>>> metrics.recall_score(y_true, y_pred)
0.5
>>> metrics.f1_score(y_true, y_pred)  
0.66...
>>> metrics.fbeta_score(y_true, y_pred, beta=0.5)  
0.83...
>>> metrics.fbeta_score(y_true, y_pred, beta=1)  
0.66...
>>> metrics.fbeta_score(y_true, y_pred, beta=2) 
0.55...
>>> metrics.precision_recall_fscore_support(y_true, y_pred, beta=0.5)  
(array([ 0.66...,  1.        ]), array([ 1. ,  0.5]), array([ 0.71...,  0.83...]), array([2, 2]...))


>>> import numpy as np
>>> from sklearn.metrics import precision_recall_curve
>>> from sklearn.metrics import average_precision_score
>>> y_true = np.array([0, 0, 1, 1])
>>> y_scores = np.array([0.1, 0.4, 0.35, 0.8])
>>> precision, recall, threshold = precision_recall_curve(y_true, y_scores)
>>> precision  
array([ 0.66...,  0.5       ,  1.        ,  1.        ])
>>> recall
array([ 1. ,  0.5,  0.5,  0. ])
>>> threshold
array([ 0.35,  0.4 ,  0.8 ])
>>> average_precision_score(y_true, y_scores)  
0.79...

3.8.2 多元分类和多标签分类

在多分类(Multiclass)和多标签(multilabel)分类问题上,precision, recall, 和 F-measure的概念可以独立应用到每个label上。有一些方法可以综合各标签上的结果,通过指定average_precision_score (只能用在multilabel上), f1_score, fbeta_score, precision_recall_fscore_support, precision_score 和 recall_score这些函数上的参数average可以做到。

注意:

  • “micro”选项:表示在多分类中的对所有label进行micro-averaging产生一个平均precision,recall和F值
  • “weighted”选项:表示会产生一个weighted-averaging的F值。

可以考虑下面的概念:

  • y是(sample, label)pairs的预测集
  • \hat{y}是(sample, label)pairs的真实集
  • L是labels的集
  • S是labels的集
  • \hat{y}是y的子集,样本s,比如:y_s :=  \left{(s’, l) \in y | s’ = s \right}y_s :=  \left{(s’, l) \in y | s’ = s \right}
  • y_l表示label l的y子集
  • 同样的,y_sy_l都是\hat{y}的子集
  • P(A, B) := \frac{\left | A \cap B \right |}{\left |A \right |}
  • R(A, B) := \frac{\left | A \cap B \right |}{\left |B \right |} 在处理B = \emptyset时方式更不同;该实现采用R(A, B):=0,且与P相类似。
  • F_\beta(A, B) := \left(1 + \beta^2\right) \frac{P(A, B) \times R(A, B)}{\beta^2 P(A, B) + R(A, B)}

metrics的定义如下:

代码:

>>> from sklearn import metrics
>>> y_true = [0, 1, 2, 0, 1, 2]
>>> y_pred = [0, 2, 1, 0, 0, 1]
>>> metrics.precision_score(y_true, y_pred, average='macro')  
0.22...
>>> metrics.recall_score(y_true, y_pred, average='micro')
... 
0.33...
>>> metrics.f1_score(y_true, y_pred, average='weighted')  
0.26...
>>> metrics.fbeta_score(y_true, y_pred, average='macro', beta=0.5)  
0.23...
>>> metrics.precision_recall_fscore_support(y_true, y_pred, beta=0.5, average=None)
... 
(array([ 0.66...,  0.        ,  0.        ]), array([ 1.,  0.,  0.]), array([ 0.71...,  0.        ,  0.        ]), array([2, 2, 2]...))

对于多分类问题,对于一个“negative class”,有可能会排除一些标签:

>>> metrics.recall_score(y_true, y_pred, labels=[1, 2], average='micro')
... # excluding 0, no labels were correctly recalled
0.0

类似的,在数据集样本中没有出现的label不能用在macro-averaging中。

>>> metrics.precision_score(y_true, y_pred, labels=[0, 1, 2, 3], average='macro')
... 
0.166...

3.9 Hinge loss

hinge_loss函数会使用hinge loss计算模型与数据之间的平均距离。它是一个单边的metric,只在预测错误(prediction erros)时考虑。(Hinge loss被用于最大间隔分类器上:比如SVM)

如果label使用+1和-1进行编码。y为真实值,w为由decision_function结出的预测决策。 hinge loss的定义如下:

L_\text{Hinge}(y, w) = \max\left\{1 - wy, 0\right\} = \left|1 - wy\right|_+

如果超过两个label,由于Crammer & Singer所提到的问题 ,hinge_loss 会使用一个多元分类的变种。

如果ywyw是对于true label的预测判断(predicted decision),ytyt则是对于其他label的预测判断的最大值,而predicted decisions由多个predicted decision输出,那么多分类的hinge loss定义如下:

L_\text{Hinge}(y_w, y_t) = \max\left{1 + y_t - y_w, 0\right}

二分类问题示例:

>>> from sklearn import svm
>>> from sklearn.metrics import hinge_loss
>>> X = [[0], [1]]
>>> y = [-1, 1]
>>> est = svm.LinearSVC(random_state=0)
>>> est.fit(X, y)
LinearSVC(C=1.0, class_weight=None, dual=True, fit_intercept=True,
     intercept_scaling=1, loss='squared_hinge', max_iter=1000,
     multi_class='ovr', penalty='l2', random_state=0, tol=0.0001,
     verbose=0)
>>> pred_decision = est.decision_function([[-2], [3], [0.5]])
>>> pred_decision  
array([-2.18...,  2.36...,  0.09...])
>>> hinge_loss([-1, 1, 1], pred_decision)  
0.3...

多分类问题示例:

>>> X = np.array([[0], [1], [2], [3]])
>>> Y = np.array([0, 1, 2, 3])
>>> labels = np.array([0, 1, 2, 3])
>>> est = svm.LinearSVC()
>>> est.fit(X, Y)
LinearSVC(C=1.0, class_weight=None, dual=True, fit_intercept=True,
     intercept_scaling=1, loss='squared_hinge', max_iter=1000,
     multi_class='ovr', penalty='l2', random_state=None, tol=0.0001,
     verbose=0)
>>> pred_decision = est.decision_function([[-1], [2], [3]])
>>> y_true = [0, 2, 3]
>>> hinge_loss(y_true, pred_decision, labels)  
0.56...

3.10 Log loss

Log loss也被称为logistic回归loss,或者交叉熵loss(cross-entropy loss),用于概率估计。它通常用在(multinomial)的LR和神经网络上,以最大期望(EM:expectation-maximization)的变种的方式,用于评估一个分类器的概率输出,而非进行离散预测。

对于二元分类,true label为:y \in {0,1},概率估计为:p = \operatorname{Pr}(y = 1),每个样本的log loss是对分类器给定true label的负值log似然估计(negative log-likelihood):

L_{\log}(y, p) = -\log \operatorname{Pr}(y|p) = -(y \log (p) + (1 - y) \log (1 - p))

当扩展到多元分类(multiclass)上时。可以将样本的true label编码成1-of-K个二元指示器矩阵Y,如果从label K集合中取出的样本i,对应的label为k,则yi,k=1yi,k=1,P为概率估计矩阵,pi,k=Pr(ti,k=1)pi,k=Pr⁡(ti,k=1)。整个集合的log loss表示如下:

L_{\log}(Y, P) = -\log \operatorname{Pr}(Y|P) = - \frac{1}{N} \sum_{i=0}^{N-1} \sum_{k=0}^{K-1} y_{i,k} \log p_{i,k}

我们再看下如何对二分类的log loss进行泛化的,注意,在二分类问题上,p_{i,0} = 1 - p_{i,1}y_{i,0} = 1 - y_{i,1},因而,通过在y_{i,0} = 1 - y_{i,1}扩展内部和来给出二分类的log loss。

log_loss函数,通过给定一列真实值label和一个概率矩阵来计算log loss,返回值通过estimator的predict_proba返回。

>>> from sklearn.metrics import log_loss
>>> y_true = [0, 0, 1, 1]
>>> y_pred = [[.9, .1], [.8, .2], [.3, .7], [.01, .99]]
>>> log_loss(y_true, y_pred)    
0.1738...

y_pred中的[.9, .1]指的是,第一个样本中90%的概率是label 0。另外,log loss是非负的。

3.11 Matthews相关系数

matthews_corrcoef函数计算了二元分类的Matthew’s correlation coefficient (MCC).

wikipedia是这么说的:

“The Matthews correlation coefficient is used in machine learning as a measure of the quality of binary (two-class) classifications. It takes into account true and false positives and negatives and is generally regarded as a balanced measure which can be used even if the classes are of very different sizes. The MCC is in essence a correlation coefficient value between -1 and +1. A coefficient of +1 represents a perfect prediction, 0 an average random prediction and -1 an inverse prediction. The statistic is also known as the phi coefficient.”

翻译如下:

机器学习中使用的Matthews相关系数,用于度量二分类的质量。它会考虑TP/FP/TN/FP的情况,通常被认为是一个balanced的度量 ,可以用于那些有着不同size的分类中。MCC本质上是一个介于[-1,+1]之间的相关系数值。相关系数为+1,表示是一个完美的预测,0表示是一个平均随机预测(average random prediction),而-1表示是一个逆预测(inverse prediction)。这种统计方法也被称为:phi coefficient。

MCC相应的定义如下:

MCC = \frac{tp \times tn - fp \times fn}{\sqrt{(tp + fp)(tp + fn)(tn + fp)(tn + fn)}}.

这里的示例展示了matthews_corrcoef 函数的使用:

>>> from sklearn.metrics import matthews_corrcoef
>>> y_true = [+1, +1, +1, -1]
>>> y_pred = [+1, -1, +1, +1]
>>> matthews_corrcoef(y_true, y_pred)  
-0.33...

3.12 ROC

roc_curve计算了ROC曲线。Wikipedia如下:

“A receiver operating characteristic (ROC), or simply ROC curve, is a graphical plot which illustrates the performance of a binary classifier system as its discrimination threshold is varied. It is created by plotting the fraction of true positives out of the positives (TPR = true positive rate) vs. the fraction of false positives out of the negatives (FPR = false positive rate), at various threshold settings. TPR is also known as sensitivity, and FPR is one minus the specificity or true negative rate.”

该函数需要二分类的真实值和预测值,它可以是正例的概率估计,置信值,或二分决策值。下例展示了如何使用:

>>> import numpy as np
>>> from sklearn.metrics import roc_curve
>>> y = np.array([1, 1, 2, 2])
>>> scores = np.array([0.1, 0.4, 0.35, 0.8])
>>> fpr, tpr, thresholds = roc_curve(y, scores, pos_label=2)
>>> fpr
array([ 0. ,  0.5,  0.5,  1. ])
>>> tpr
array([ 0.5,  0.5,  1. ,  1. ])
>>> thresholds
array([ 0.8 ,  0.4 ,  0.35,  0.1 ])

 

roc_auc_score函数计算了ROC曲线下面的面积,它也被称为AUC或AUROC。通过计算下面的面积,曲线信息被归一化到1内。

>>> import numpy as np
>>> from sklearn.metrics import roc_auc_score
>>> y_true = np.array([0, 0, 1, 1])
>>> y_scores = np.array([0.1, 0.4, 0.35, 0.8])
>>> roc_auc_score(y_true, y_scores)
0.75

在多标签(multi-label)分类上,roc_auc_score通过对上面的label进行平均。

对比于其它metrics: accuracy、 Hamming loss、 F1-score, ROC不需要为每个label优化一个阀值。roc_auc_score函数也可以用于多分类(multi-class)问题上。如果预测的输出已经被二值化。

示例:

3.13 0-1 loss

zero_one_loss会通过在nsamplesnsamples计算0-1分类的L0−1L0−1)的平值或求和。缺省情况下,该函数会对样本进行归一化。为了得到L0−1L0−1的求和,需要将normalize设置为False。

在multilabel分类上,如果一个子集的labels与预测值严格匹配,zero_one_loss会得到1,如果有许多错误,则为0。缺省的,该函数会返回有问题的预测子集(不等)的百分比。为了得到这样的子集数,可以将normalize置为False。

如果\hat{y}_i是第i个样本的预测值, y_i是第i个样本的真实值,那么0-1 loss的定义如下:

L_{0-1}(y_i, \hat{y}_i) = 1(\hat{y}_i \not= y_i)

其中1(x)表示的是指示函数。

>>> from sklearn.metrics import zero_one_loss
>>> y_pred = [1, 2, 3, 4]
>>> y_true = [2, 2, 3, 4]
>>> zero_one_loss(y_true, y_pred)
0.25
>>> zero_one_loss(y_true, y_pred, normalize=False)
1

在多标签的问题上,如果使用二元标签指示器,第一个标签集[0,1]具有一个error:

>>> zero_one_loss(np.array([[0, 1], [1, 1]]), np.ones((2, 2)))
0.5

>>> zero_one_loss(np.array([[0, 1], [1, 1]]), np.ones((2, 2)),  normalize=False)
1

示例:

4. Multilabel的ranking metrics

在多标签学习上,每个样本都具有多个真实值label与它对应。它的目的是,为真实值label得到最高分或者最好的rank。

4.1 范围误差(Coverage error)

coverage_error计算了那些必须在最终预测(所有真实的label都会被预测)中包含的labels的平均数目。如果你想知道有多少top高分labels(top-scored-labels)时它会很有用,你必须以平均的方式进行预测,不漏过任何一个真实label。该metrics的最优值是对真实label求平均。

给定一个真实label的二分类指示矩阵:

y \in \left\{0, 1\right\}^{n_\text{samples} \times n_\text{labels}}

以及每个label相关的分值:

\hat{f} \in \mathbb{R}^{n_\text{samples} \times n_\text{labels}}

相应的范围误差定义如下:

coverage(y, \hat{f}) = \frac{1}{n_{\text{samples}}} \sum_{i=0}^{n_{\text{samples}} - 1} \max_{j:y_{ij} = 1} \text{rank}_{ij}

其中:$ \text{rank}{ij} = \left|\left{k: \hat{f}{ik} \geq \hat{f}_{ij} \right}\right| $。给定rank定义,通过给出最大的rank,来打破y_scores。

示例如下:

>>> import numpy as np
>>> from sklearn.metrics import coverage_error
>>> y_true = np.array([[1, 0, 0], [0, 0, 1]])
>>> y_score = np.array([[0.75, 0.5, 1], [1, 0.2, 0.1]])
>>> coverage_error(y_true, y_score)
2.5

4.2 Label ranking平均准确率

label_ranking_average_precision_score函数实现了Label ranking平均准确率 :LRAP(label ranking average precision)。该metric与average_precision_score有关联,但它基于label ranking的概念,而非precision/recall。

LRAP会对每个样本上分配的真实label进行求平均,真实值的比例 vs. 低分值labels的总数。如果你可以为每个样本相关的label给出更好的rank,该指标将产生更好的分值。得到的score通常都会比0大,最佳值为1。如果每个样本都只有一个相关联的label,那么LRAP就与平均倒数排名:mean reciprocal rank

给定一个true label的二元指示矩阵,y \in \mathcal{R}^{n_\text{samples} \times n_\text{labels}},每个label相对应的分值:\hat{f} \in \mathcal{R}^{n_\text{samples} \times n_\text{labels}},平均准确率的定义如下:

LRAP(y, \hat{f}) = \frac{1}{n_{\text{samples}}} \sum_{i=0}^{n_{\text{samples}} - 1} \frac{1}{|y_i|} \sum_{j:y_{ij} = 1} \frac{|\mathcal{L}_{ij}|}{\text{rank}_{ij}}

其中:

  • $ \mathcal{L}{ij} = \left{k: y{ik} = 1, \hat{f}{ik} \geq \hat{f}{ij} \right} $
  • $ \text{rank}{ij} = \left|\left{k: \hat{f}{ik} \geq \hat{f}_{ij} \right}\right| $
  • | \cdot |是l0 范式或是数据集的基数。

该函数的示例:

>>> import numpy as np
>>> from sklearn.metrics import label_ranking_average_precision_score
>>> y_true = np.array([[1, 0, 0], [0, 0, 1]])
>>> y_score = np.array([[0.75, 0.5, 1], [1, 0.2, 0.1]])
>>> label_ranking_average_precision_score(y_true, y_score) 
0.416...

4.3 Ranking loss

label_ranking_loss函数用于计算ranking loss,它会对label对没有正确分配的样本进行求平均。例如:true labels的分值比false labels的分值小,或者对true/false label进行了相反的加权。最低的ranking loss为0.

给定一个true labels的二元指示矩阵:y \in \left{0, 1\right}^{n_\text{samples} \times n_\text{labels}},每个label相关的分值为:\hat{f} \in \mathbb{R}^{n_\text{samples} \times n_\text{labels}},ranking loss的定义如下:

\text{ranking\_loss}(y, \hat{f}) = \frac{1}{n_{\text{samples}}} \sum_{i=0}^{n_{\text{samples}} - 1} \frac{1}{\|y_i\|(n_\text{labels} - |y_i|)} \left\|\left\{(k, l): \hat{f}_{ik} < \hat{f}_{il}, y_{ik} = 1, y_{il} = 0 \right\}\right\|

其中| \cdot | 为l0范式或数据集基数。

示例:

>>> import numpy as np
>>> from sklearn.metrics import label_ranking_loss
>>> y_true = np.array([[1, 0, 0], [0, 0, 1]])
>>> y_score = np.array([[0.75, 0.5, 1], [1, 0.2, 0.1]])
>>> label_ranking_loss(y_true, y_score) 
0.75...

>>> y_score = np.array([[1.0, 0.1, 0.2], [0.1, 0.2, 0.9]])
>>> label_ranking_loss(y_true, y_score)
0.0

5.回归metrics

sklearn.metrics 实现了许多种loss, score,untility函数来测评回归的性能。其中有一些可以作了增加用于处理多输出(multioutput)的情况:

这些函数具有一个multioutput关键参数,它指定了对于每一个单独的target是否需要对scores/loss进行平均。缺省值为’uniform_average’,它会对结果进行均匀加权平均。如果输出的ndarray的shape为(n_outputs,),那么它们返回的entries为权重以及相应的平均权重。如果multioutput参数为’raw_values’,那么所有的scores/losses都不改变,以raw的方式返回一个shape为(n_outputs,)的数组。

r2_score和explained_variance_score 对于multioutput参数还接受另一个额外的值:’variance_weighted’。该选项将通过相应target变量的variance产生一个为每个单独的score加权的值。该设置将会对全局捕获的未归一化的variance进行量化。如果target的variance具有不同的规模(scale),那么该score将会把更多的重要性分配到那些更高的variance变量上。

对于r2_score的缺省值为multioutput=’variance_weighted’,向后兼容。后续版本会改成uniform_average。

5.1 可释方差值(Explained variance score)

explained_variance_score解释了explained variance regression score

如果\hat{y}是估计的target输出,y为相应的真实(correct)target输出,Var为求方差(variance),即标准差的平方,那么可释方差(explained variance)的估计如下:

\texttt{explained\_{}variance}(y, \hat{y}) = 1 - \frac{Var\{ y - \hat{y}\}}{Var\{y\}}

最好的可能值为1.0,越低表示越差。

示例如下:

>>> from sklearn.metrics import explained_variance_score
>>> y_true = [3, -0.5, 2, 7]
>>> y_pred = [2.5, 0.0, 2, 8]
>>> explained_variance_score(y_true, y_pred)  
0.957...
>>> y_true = [[0.5, 1], [-1, 1], [7, -6]]
>>> y_pred = [[0, 2], [-1, 2], [8, -5]]
>>> explained_variance_score(y_true, y_pred, multioutput='raw_values')
... 
array([ 0.967...,  1.        ])
>>> explained_variance_score(y_true, y_pred, multioutput=[0.3, 0.7])
... 
0.990...

5.2 平均绝对误差(Mean absolute error)

mean_absolute_error函数将会计算平均绝对误差,该指标对应于绝对误差loss(absolute error loss)或l1范式loss(l1-norm loss)的期望值。

如果$ \hat{y}i 是第i个样本的预测值,yi是相应的真实值,那么在是第i个样本的预测值,yi是相应的真实值,那么在 n{\text{samples}} $上的平均绝对误差(MAE)的定义如下:

\text{MAE}(y, \hat{y}) = \frac{1}{n_{\text{samples}}} \sum_{i=0}^{n_{\text{samples}}-1} \left| y_i - \hat{y}_i \right|

示例:

>>> from sklearn.metrics import mean_absolute_error
>>> y_true = [3, -0.5, 2, 7]
>>> y_pred = [2.5, 0.0, 2, 8]
>>> mean_absolute_error(y_true, y_pred)
0.5
>>> y_true = [[0.5, 1], [-1, 1], [7, -6]]
>>> y_pred = [[0, 2], [-1, 2], [8, -5]]
>>> mean_absolute_error(y_true, y_pred)
0.75
>>> mean_absolute_error(y_true, y_pred, multioutput='raw_values')
array([ 0.5,  1. ])
>>> mean_absolute_error(y_true, y_pred, multioutput=[0.3, 0.7])
... 
0.849...

5.3 均方误差(Mean squared error)

mean_squared_error用于计算平均平方误差,该指标对应于平方(二次方)误差loss(squared (quadratic) error loss)的期望值。

\text{MSE}(y, \hat{y}) = \frac{1}{n_\text{samples}} \sum_{i=0}^{n_\text{samples} - 1} (y_i - \hat{y}_i)^2.

示例为:

>>> from sklearn.metrics import mean_squared_error
>>> y_true = [3, -0.5, 2, 7]
>>> y_pred = [2.5, 0.0, 2, 8]
>>> mean_squared_error(y_true, y_pred)
0.375
>>> y_true = [[0.5, 1], [-1, 1], [7, -6]]
>>> y_pred = [[0, 2], [-1, 2], [8, -5]]
>>> mean_squared_error(y_true, y_pred)  
0.7083...

示例:

5.4 中值绝对误差(Median absolute error)

median_absolute_error是很令人感兴趣的,它对异类(outliers)的情况是健壮的。该loss函数通过计算target和prediction间的绝对值,然后取中值得到。

MedAE的定义如下:

\text{MedAE}(y, \hat{y}) = \text{median}(\mid y_1 - \hat{y}_1 \mid, \ldots, \mid y_n - \hat{y}_n \mid)

median_absolute_error不支持multioutput。

示例:

>>> from sklearn.metrics import median_absolute_error
>>> y_true = [3, -0.5, 2, 7]
>>> y_pred = [2.5, 0.0, 2, 8]
>>> median_absolute_error(y_true, y_pred)
0.5

5.5 R方值,确定系数

r2_score函数用于计算R²(确定系数:coefficient of determination)。它用来度量未来的样本是否可能通过模型被很好地预测。分值为1表示最好,它可以是负数(因为模型可以很糟糕)。一个恒定的模型总是能预测y的期望值,忽略掉输入的feature,得到一个R^2为0的分值。

R²的定义如下:

R^2(y, \hat{y}) = 1 - \frac{\sum_{i=0}^{n_{\text{samples}} - 1} (y_i - \hat{y}_i)^2}{\sum_{i=0}^{n_\text{samples} - 1} (y_i - \bar{y})^2}

其中:\bar{y} = \frac{1}{n_{\text{samples}}} \sum_{i=0}^{n_{\text{samples}} - 1} y_i

示例:

>>> from sklearn.metrics import r2_score
>>> y_true = [3, -0.5, 2, 7]
>>> y_pred = [2.5, 0.0, 2, 8]
>>> r2_score(y_true, y_pred)  
0.948...
>>> y_true = [[0.5, 1], [-1, 1], [7, -6]]
>>> y_pred = [[0, 2], [-1, 2], [8, -5]]
>>> r2_score(y_true, y_pred, multioutput='variance_weighted')
... 
0.938...
>>> y_true = [[0.5, 1], [-1, 1], [7, -6]]
>>> y_pred = [[0, 2], [-1, 2], [8, -5]]
>>> r2_score(y_true, y_pred, multioutput='uniform_average')
... 
0.936...
>>> r2_score(y_true, y_pred, multioutput='raw_values')
... 
array([ 0.965...,  0.908...])
>>> r2_score(y_true, y_pred, multioutput=[0.3, 0.7])
... 
0.925...

示例:

6.聚类metrics

sklearn.metrics也提供了聚类的metrics。更多细节详见:

7. Dummy estimators

当进行监督学习时,一个简单明智的check包括:使用不同的规则比较一个estimator。DummyClassifier实现了三种简单的策略用于分类:

  • stratified:根据训练集的分布来生成随机预测
  • most_frequent:在训练集中总是预测最频繁的label
  • prior:总是预测分类最大化分类优先权(比如:most_frequent),predict_proba返回分类优化权
  • uniform:以均匀方式随机生成预测
  • constant:由用户指定,总是预测一个常量的label。该方法的一个最主要动机是:F1-scoring,其中正例是最主要的。

注意,所有的这些策略中,predict方法会完成忽略输入数据!

示例,我们首先创建一个imbalanced的数据集:

>>> from sklearn.datasets import load_iris
>>> from sklearn.cross_validation import train_test_split
>>> iris = load_iris()
>>> X, y = iris.data, iris.target
>>> y[y != 1] = -1
>>> X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)

下一步,比较下SVC的accuary和most_frequent:

>>> from sklearn.dummy import DummyClassifier
>>> from sklearn.svm import SVC
>>> clf = SVC(kernel='linear', C=1).fit(X_train, y_train)
>>> clf.score(X_test, y_test) 
0.63...
>>> clf = DummyClassifier(strategy='most_frequent',random_state=0)
>>> clf.fit(X_train, y_train)
DummyClassifier(constant=None, random_state=0, strategy='most_frequent')
>>> clf.score(X_test, y_test)  
0.57...

我们可以看到SVC并不比DummyClassifier好很多,接着,我们换下kernel:

>>> clf = SVC(kernel='rbf', C=1).fit(X_train, y_train)
>>> clf.score(X_test, y_test)  
0.97...

我们可以看到,accuracy增强到了几乎100%。如果CPU开销不大,这里建议再做下cross-validation。如果你希望在参数空间进行优化,我们强烈推荐你使用GridSearchCV。

更一般的,分类器的accuracy太接近于随机,这可能意味着有可能会出问题:features没有用,超参数没有被正确设置,分类器所用的数据集imbalance,等等。。。

DummyRegressor也实现了4种简单的方法:

  • mean:通常预测训练target的均值。
  • median:通常预测训练target的中值。
  • quantile:预测由用户提供的训练target的分位数
  • constant:常量

在上面的所有策略,predict完全忽略输入数据。

参考:

http://scikit-learn.org/stable/modules/model_evaluation.html

Logo

CSDN联合极客时间,共同打造面向开发者的精品内容学习社区,助力成长!

更多推荐