HashMap的扩容机制---resize()

原文链接: https://blog.csdn.net/qq_27093465/article/details/52270519

虽然在hashmap的原理里面有这段,但是这个单独拿出来讲rehash或者resize()也是极好的。

什么时候扩容:当向容器添加元素的时候,会判断当前容器的元素个数,如果大于等于阈值(知道这个阈字怎么念吗?不念fa值,念yu值四声)---即当前数组的长度乘以加载因子的值的时候,就要自动扩容啦。

扩容(resize)就是重新计算容量,向HashMap对象里不停的添加元素,而HashMap对象内部的数组无法装载更多的元素时,对象就需要扩大数组的长度,以便能装入更多的元素。当然Java里的数组是无法自动扩容的,方法是使用一个新的数组代替已有的容量小的数组,就像我们用一个小桶装水,如果想装更多的水,就得换大水桶。

先看一下什么时候,resize();

[java] view plain copy
  1. /**  
  2.  * HashMap 添加节点  
  3.  *  
  4.  * @param hash        当前key生成的hashcode  
  5.  * @param key         要添加到 HashMap 的key  
  6.  * @param value       要添加到 HashMap 的value  
  7.  * @param bucketIndex 桶,也就是这个要添加 HashMap 里的这个数据对应到数组的位置下标  
  8.  */    
  9. void addEntry(int hash, K key, V value, int bucketIndex) {    
  10.     //size:The number of key-value mappings contained in this map.    
  11.     //threshold:The next size value at which to resize (capacity * load factor)    
  12.     //数组扩容条件:1.已经存在的key-value mappings的个数大于等于阈值    
  13.     //             2.底层数组的bucketIndex坐标处不等于null    
  14.     if ((size >= threshold) && (null != table[bucketIndex])) {    
  15.         resize(2 * table.length);//扩容之后,数组长度变了    
  16.         hash = (null != key) ? hash(key) : 0;//为什么要再次计算一下hash值呢?    
  17.         bucketIndex = indexFor(hash, table.length);//扩容之后,数组长度变了,在数组的下标跟数组长度有关,得重算。    
  18.     }    
  19.     createEntry(hash, key, value, bucketIndex);    
  20. }    
  21.     
  22. /**  
  23.  * 这地方就是链表出现的地方,有2种情况  
  24.  * 1,原来的桶bucketIndex处是没值的,那么就不会有链表出来啦  
  25.  * 2,原来这地方有值,那么根据Entry的构造函数,把新传进来的key-value mapping放在数组上,原来的就挂在这个新来的next属性上了  
  26.  */    
  27. void createEntry(int hash, K key, V value, int bucketIndex) {    
  28.     HashMap.Entry<K, V> e = table[bucketIndex];    
  29.     table[bucketIndex] = new HashMap.Entry<>(hash, key, value, e);    
  30.     size++;    
  31. }  

我们分析下resize的源码,鉴于JDK1.8融入了红黑树,较复杂,为了便于理解我们仍然使用JDK1.7的代码,好理解一些,本质上区别不大,具体区别后文再说。

[java] view plain copy
  1. void resize(int newCapacity) {   //传入新的容量  
  2.     Entry[] oldTable = table;    //引用扩容前的Entry数组  
  3.     int oldCapacity = oldTable.length;  
  4.     if (oldCapacity == MAXIMUM_CAPACITY) {  //扩容前的数组大小如果已经达到最大(2^30)了  
  5.         threshold = Integer.MAX_VALUE; //修改阈值为int的最大值(2^31-1),这样以后就不会扩容了  
  6.         return;  
  7.     }  
  8.   
  9.     Entry[] newTable = new Entry[newCapacity];  //初始化一个新的Entry数组  
  10.     transfer(newTable);                         //!!将数据转移到新的Entry数组里  
  11.     table = newTable;                           //HashMap的table属性引用新的Entry数组  
  12.     threshold = (int) (newCapacity * loadFactor);//修改阈值  
  13. }  
这里就是使用一个容量更大的数组来代替已有的容量小的数组,transfer()方法将原有Entry数组的元素拷贝到新的Entry数组里。

[java] view plain copy
  1. void transfer(Entry[] newTable) {  
  2.     Entry[] src = table;                   //src引用了旧的Entry数组  
  3.     int newCapacity = newTable.length;  
  4.     for (int j = 0; j < src.length; j++) { //遍历旧的Entry数组  
  5.         Entry<K, V> e = src[j];             //取得旧Entry数组的每个元素  
  6.         if (e != null) {  
  7.             src[j] = null;//释放旧Entry数组的对象引用(for循环后,旧的Entry数组不再引用任何对象)  
  8.             do {  
  9.                 Entry<K, V> next = e.next;  
  10.                 int i = indexFor(e.hash, newCapacity); //!!重新计算每个元素在数组中的位置  
  11.                 e.next = newTable[i]; //标记[1]  
  12.                 newTable[i] = e;      //将元素放在数组上  
  13.                 e = next;             //访问下一个Entry链上的元素  
  14.             } while (e != null);  
  15.         }  
  16.     }  
  17. }  

[java] view plain copy
  1. static int indexFor(int h, int length) {  
  2.     return h & (length - 1);  
  3. }  
文章中间部分:四、存储实现;详细解释了为什么indexFor方法中要h & (length-1)

newTable[i]的引用赋给了e.next,也就是使用了单链表的头插入方式,同一位置上新元素总会被放在链表的头部位置;这样先放在一个索引上的元素终会被放到Entry链的尾部(如果发生了hash冲突的话),这一点和Jdk1.8有区别,下文详解。在旧数组中同一条Entry链上的元素,通过重新计算索引位置后,有可能被放到了新数组的不同位置上。

从上面的for循环内部开始说起吧:详细解释下,这个转存的过程。和怎么个头插入法.
Entry<K, V> e = src[j];
这句话,就把原来数组上的那个链表的引用就给接手了,所以下面src[j] = null;可以放心大胆的置空,释放空间。告诉gc这个地方可以回收啦。
继续到do while 循环里面,
Entry<K, V> next = e.next;
int i = indexFor(e.hash, newCapacity);计算出元素在新数组中的位置
下面就是单链表的头插入方式转存元素啦

关于这个 单链表的头插入方式 的理解,我多说两句。
这地方我再看的时候,就有点蒙了,他到底怎么在插到新的数组里面的?
要是在插入新数组的时候,也出现了一个数组下标的位置处,出现了多个节点的话,那又是怎么插入的呢?
1,假设现在刚刚插入到新数组上,因为是对象数组,数组都是要默认有初始值的,那么这个数组的初始值都是null。不信的可以新建个Javabean数组测试下。
那么e.next = newTable[i],也就是e.next = null啦。然后再newTable[i] = e;也就是 说这个时候,这个数组的这个下标位置的值设置成这个e啦。
2,假设这个时候,继续上面的循环,又取第二个数据e2的时候,恰好他的下标和刚刚上面的那个下标相同啦,那么这个时候,是又要有链表产生啦、
e.next = newTable[i];,假设上面第一次存的叫e1吧,那么现在e.next = newTable[i];也就是e.next = e1;
然后再,newTable[i] = e;,把这个后来的赋值在数组下标为i的位置,当然他们两个的位置是相同的啦。然后注意现在的e,我们叫e2吧。e2.next指向的是刚刚的e1,e1的next是null。
这就解释啦:先放在一个索引上的元素终会被放到Entry链的尾部。这句话。

关于什么时候resize()的说明:
看1.7的源码上说的条件是:
if ((size >= threshold) && (null != table[bucketIndex])) {。。。}
其中
size表示当前hashmap里面已经包含的元素的个数。
threshold:threshold = (int) Math.min(capacity * loadFactor, MAXIMUM_CAPACITY + 1);
一般是容量值X加载因子。
而1.8的是:
if (++size > threshold){}
其中
size:The number of key-value mappings contained in this map.和上面的是一样的
threshold:newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
也是一样的,
最后总结一下:就是这个map里面包含的元素,也就是size的值,大于等于这个阈值的时候,才会resize();
具体到实际情况就是:假设现在阈值是4;在添加下一个假设是第5个元素的时候,这个时候的size还是原来的,还没加1,size=4,那么阈值也是4的时候,
当执行put方法,添加第5个的时候,这个时候,4 >= 4。元素个数等于阈值。就要resize()啦。添加第4的时候,还是3 >= 4不成立,不需要resize()。
经过这番解释,可以发现下面的这个例子,不应该是在添加第二个的时候resize(),而是在添加第三个的时候,才resize()的。
这个也是我后来再细看的时候,发现的。当然,这个咱可以先忽略,重点看如何resize(),以及如何将旧数据移动到新数组的

下面举个例子说明下扩容过程。

这句话是重点----hash(){return key % table.length;}方法,就是翻译下面的一行解释:

假设了我们的hash算法就是简单的用key mod 一下表的大小(也就是数组的长度)。

其中的哈希桶数组table的size=2, 所以key = 3、7、5,put顺序依次为 5、7、3。在mod 2以后都冲突在table[1]这里了。这里假设负载因子 loadFactor=1,即当键值对的实际大小size 大于 table的实际大小时进行扩容。接下来的三个步骤是哈希桶数组 resize成4,然后所有的Node重新rehash的过程。



下面我们讲解下JDK1.8做了哪些优化。经过观测可以发现,我们使用的是2次幂的扩展(指长度扩为原来2倍),所以,

经过rehash之后,元素的位置要么是在原位置,要么是在原位置再移动2次幂的位置。对应的就是下方的resize的注释。

[java]  view plain  copy
  1. /** 
  2.  * Initializes or doubles table size.  If null, allocates in 
  3.  * accord with initial capacity target held in field threshold. 
  4.  * Otherwise, because we are using power-of-two expansion, the 
  5.  * elements from each bin must either stay at same index, or move 
  6.  * with a power of two offset in the new table. 
  7.  * 
  8.  * @return the table 
  9.  */  
  10. final Node<K,V>[] resize() {  

看下图可以明白这句话的意思,n为table的长度,图(a)表示扩容前的key1和key2两种key确定索引位置的示例,图(b)表示扩容后key1和key2两种key确定索引位置的示例,其中hash1是key1对应的哈希值(也就是根据key1算出来的hashcode值)与高位与运算的结果。


元素在重新计算hash之后,因为n变为2倍,那么n-1的mask范围在高位多1bit(红色),因此新的index就会发生这样的变化:


因此,我们在扩充HashMap的时候,不需要像JDK1.7的实现那样重新计算hash,只需要看看原来的hash值新增的那个bit是1还是0就好了,是0的话索引没变,是1的话索引变成“原索引+oldCap”,可以看看下图为16扩充为32的resize示意图:

jdk1.8 hashMap扩容例图

我是 没看懂他连个图是怎么前后对应的,谁看懂了,交流哈赛。

当时上面这个图,没看懂,是因为,他就没说每个节点的hashcode是啥,他怎么确定是保留在原来的位置,还是说在原来位置的基础上再加个原来数组的长度呢。所以,上面那个图仅仅具有丁点儿参考价值。

这个设计确实非常的巧妙,既省去了重新计算hash值的时间,而且同时,由于新增的1bit是0还是1可以认为是随机的,因此resize的过程,均匀的把之前的冲突的节点分散到新的bucket了。这一块就是JDK1.8新增的优化点。有一点注意区别,JDK1.7中rehash的时候,旧链表迁移新链表的时候,如果在新表的数组索引位置相同,则链表元素会倒置,但是从上图可以看出,JDK1.8不会倒置。有兴趣的同学可以研究下JDK1.8的resize源码,写的很赞,如下:

 1 final Node<K,V>[] resize() {
 2     Node<K,V>[] oldTab = table;
 3     int oldCap = (oldTab == null) ? 0 : oldTab.length;
 4     int oldThr = threshold;
 5     int newCap, newThr = 0;
 6     if (oldCap > 0) {
 7         // 超过最大值就不再扩充了,就只好随你碰撞去吧
 8         if (oldCap >= MAXIMUM_CAPACITY) {
 9             threshold = Integer.MAX_VALUE;
10             return oldTab;
11         }
12         // 没超过最大值,就扩充为原来的2倍
13         else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
14                  oldCap >= DEFAULT_INITIAL_CAPACITY)
15             newThr = oldThr << 1; // double threshold
16     }
17     else if (oldThr > 0) // initial capacity was placed in threshold
18         newCap = oldThr;
19     else {               // zero initial threshold signifies using defaults
20         newCap = DEFAULT_INITIAL_CAPACITY;
21         newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
22     }
23     // 计算新的resize上限
24     if (newThr == 0) {
25 
26         float ft = (float)newCap * loadFactor;
27         newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
28                   (int)ft : Integer.MAX_VALUE);
29     }
30     threshold = newThr;
31     @SuppressWarnings({"rawtypes","unchecked"})
32         Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
33     table = newTab;
34     if (oldTab != null) {
35         // 把每个bucket都移动到新的buckets中
36         for (int j = 0; j < oldCap; ++j) {
37             Node<K,V> e;
38             if ((e = oldTab[j]) != null) {
39                 oldTab[j] = null;
40                 if (e.next == null)
41                     newTab[e.hash & (newCap - 1)] = e;
42                 else if (e instanceof TreeNode)
43                     ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
44                 else { // 链表优化重hash的代码块
45                     Node<K,V> loHead = null, loTail = null;
46                     Node<K,V> hiHead = null, hiTail = null;
47                     Node<K,V> next;
48                     do {
49                         next = e.next;
50                         // 原索引
51                         if ((e.hash & oldCap) == 0) {
52                             if (loTail == null)
53                                 loHead = e;
54                             else
55                                 loTail.next = e;
56                             loTail = e;
57                         }
58                         // 原索引+oldCap
59                         else {
60                             if (hiTail == null)
61                                 hiHead = e;
62                             else
63                                 hiTail.next = e;
64                             hiTail = e;
65                         }
66                     } while ((e = next) != null);
67                     // 原索引放到bucket里
68                     if (loTail != null) {
69                         loTail.next = null;
70                         newTab[j] = loHead;
71                     }
72                     // 原索引+oldCap放到bucket里
73                     if (hiTail != null) {
74                         hiTail.next = null;
75                         newTab[j + oldCap] = hiHead;
76                     }
77                 }
78             }
79         }
80     }
81     return newTab;
82 }


Logo

权威|前沿|技术|干货|国内首个API全生命周期开发者社区

更多推荐