【转】Java8 resize() 机制
HashMap的扩容机制---resize()虽然在hashmap的原理里面有这段,但是这个单独拿出来讲rehash或者resize()也是极好的。什么时候扩容:当向容器添加元素的时候,会判断当前容器的元素个数,如果大于等于阈值(知道这个阈字怎么念吗?不念fa值,念yu值四声)---即当前数组的长度乘以加载因子的值的时候,就要自动扩容啦。扩容(resize)就是重新计算容量,向HashMap对象里
HashMap的扩容机制---resize()
原文链接: https://blog.csdn.net/qq_27093465/article/details/52270519虽然在hashmap的原理里面有这段,但是这个单独拿出来讲rehash或者resize()也是极好的。
什么时候扩容:当向容器添加元素的时候,会判断当前容器的元素个数,如果大于等于阈值(知道这个阈字怎么念吗?不念fa值,念yu值四声)---即当前数组的长度乘以加载因子的值的时候,就要自动扩容啦。
扩容(resize)就是重新计算容量,向HashMap对象里不停的添加元素,而HashMap对象内部的数组无法装载更多的元素时,对象就需要扩大数组的长度,以便能装入更多的元素。当然Java里的数组是无法自动扩容的,方法是使用一个新的数组代替已有的容量小的数组,就像我们用一个小桶装水,如果想装更多的水,就得换大水桶。
先看一下什么时候,resize();
- /**
- * HashMap 添加节点
- *
- * @param hash 当前key生成的hashcode
- * @param key 要添加到 HashMap 的key
- * @param value 要添加到 HashMap 的value
- * @param bucketIndex 桶,也就是这个要添加 HashMap 里的这个数据对应到数组的位置下标
- */
- void addEntry(int hash, K key, V value, int bucketIndex) {
- //size:The number of key-value mappings contained in this map.
- //threshold:The next size value at which to resize (capacity * load factor)
- //数组扩容条件:1.已经存在的key-value mappings的个数大于等于阈值
- // 2.底层数组的bucketIndex坐标处不等于null
- if ((size >= threshold) && (null != table[bucketIndex])) {
- resize(2 * table.length);//扩容之后,数组长度变了
- hash = (null != key) ? hash(key) : 0;//为什么要再次计算一下hash值呢?
- bucketIndex = indexFor(hash, table.length);//扩容之后,数组长度变了,在数组的下标跟数组长度有关,得重算。
- }
- createEntry(hash, key, value, bucketIndex);
- }
- /**
- * 这地方就是链表出现的地方,有2种情况
- * 1,原来的桶bucketIndex处是没值的,那么就不会有链表出来啦
- * 2,原来这地方有值,那么根据Entry的构造函数,把新传进来的key-value mapping放在数组上,原来的就挂在这个新来的next属性上了
- */
- void createEntry(int hash, K key, V value, int bucketIndex) {
- HashMap.Entry<K, V> e = table[bucketIndex];
- table[bucketIndex] = new HashMap.Entry<>(hash, key, value, e);
- size++;
- }
我们分析下resize的源码,鉴于JDK1.8融入了红黑树,较复杂,为了便于理解我们仍然使用JDK1.7的代码,好理解一些,本质上区别不大,具体区别后文再说。
- void resize(int newCapacity) { //传入新的容量
- Entry[] oldTable = table; //引用扩容前的Entry数组
- int oldCapacity = oldTable.length;
- if (oldCapacity == MAXIMUM_CAPACITY) { //扩容前的数组大小如果已经达到最大(2^30)了
- threshold = Integer.MAX_VALUE; //修改阈值为int的最大值(2^31-1),这样以后就不会扩容了
- return;
- }
- Entry[] newTable = new Entry[newCapacity]; //初始化一个新的Entry数组
- transfer(newTable); //!!将数据转移到新的Entry数组里
- table = newTable; //HashMap的table属性引用新的Entry数组
- threshold = (int) (newCapacity * loadFactor);//修改阈值
- }
- void transfer(Entry[] newTable) {
- Entry[] src = table; //src引用了旧的Entry数组
- int newCapacity = newTable.length;
- for (int j = 0; j < src.length; j++) { //遍历旧的Entry数组
- Entry<K, V> e = src[j]; //取得旧Entry数组的每个元素
- if (e != null) {
- src[j] = null;//释放旧Entry数组的对象引用(for循环后,旧的Entry数组不再引用任何对象)
- do {
- Entry<K, V> next = e.next;
- int i = indexFor(e.hash, newCapacity); //!!重新计算每个元素在数组中的位置
- e.next = newTable[i]; //标记[1]
- newTable[i] = e; //将元素放在数组上
- e = next; //访问下一个Entry链上的元素
- } while (e != null);
- }
- }
- }
- static int indexFor(int h, int length) {
- return h & (length - 1);
- }
newTable[i]的引用赋给了e.next,也就是使用了单链表的头插入方式,同一位置上新元素总会被放在链表的头部位置;这样先放在一个索引上的元素终会被放到Entry链的尾部(如果发生了hash冲突的话),这一点和Jdk1.8有区别,下文详解。在旧数组中同一条Entry链上的元素,通过重新计算索引位置后,有可能被放到了新数组的不同位置上。
从上面的for循环内部开始说起吧:详细解释下,这个转存的过程。和怎么个头插入法.
Entry<K, V> e = src[j];
这句话,就把原来数组上的那个链表的引用就给接手了,所以下面src[j] = null;可以放心大胆的置空,释放空间。告诉gc这个地方可以回收啦。
继续到do while 循环里面,
Entry<K, V> next = e.next;
int i = indexFor(e.hash, newCapacity);计算出元素在新数组中的位置
下面就是单链表的头插入方式转存元素啦
关于这个 单链表的头插入方式 的理解,我多说两句。
这地方我再看的时候,就有点蒙了,他到底怎么在插到新的数组里面的?
要是在插入新数组的时候,也出现了一个数组下标的位置处,出现了多个节点的话,那又是怎么插入的呢?
1,假设现在刚刚插入到新数组上,因为是对象数组,数组都是要默认有初始值的,那么这个数组的初始值都是null。不信的可以新建个Javabean数组测试下。
那么e.next = newTable[i],也就是e.next = null啦。然后再newTable[i] = e;也就是 说这个时候,这个数组的这个下标位置的值设置成这个e啦。
2,假设这个时候,继续上面的循环,又取第二个数据e2的时候,恰好他的下标和刚刚上面的那个下标相同啦,那么这个时候,是又要有链表产生啦、
e.next = newTable[i];,假设上面第一次存的叫e1吧,那么现在e.next = newTable[i];也就是e.next = e1;
然后再,newTable[i] = e;,把这个后来的赋值在数组下标为i的位置,当然他们两个的位置是相同的啦。然后注意现在的e,我们叫e2吧。e2.next指向的是刚刚的e1,e1的next是null。
这就解释啦:先放在一个索引上的元素终会被放到Entry链的尾部。这句话。
关于什么时候resize()的说明:
看1.7的源码上说的条件是:
if ((size >= threshold) && (null != table[bucketIndex])) {。。。}
其中
size表示当前hashmap里面已经包含的元素的个数。
threshold:threshold = (int) Math.min(capacity * loadFactor, MAXIMUM_CAPACITY + 1);
一般是容量值X加载因子。
而1.8的是:
if (++size > threshold){}
其中
size:The number of key-value mappings contained in this map.和上面的是一样的
threshold:newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
也是一样的,
最后总结一下:就是这个map里面包含的元素,也就是size的值,大于等于这个阈值的时候,才会resize();
具体到实际情况就是:假设现在阈值是4;在添加下一个假设是第5个元素的时候,这个时候的size还是原来的,还没加1,size=4,那么阈值也是4的时候,
当执行put方法,添加第5个的时候,这个时候,4 >= 4。元素个数等于阈值。就要resize()啦。添加第4的时候,还是3 >= 4不成立,不需要resize()。
经过这番解释,可以发现下面的这个例子,不应该是在添加第二个的时候resize(),而是在添加第三个的时候,才resize()的。
这个也是我后来再细看的时候,发现的。当然,这个咱可以先忽略,重点看如何resize(),以及如何将旧数据移动到新数组的
下面举个例子说明下扩容过程。
这句话是重点----hash(){return key % table.length;}方法,就是翻译下面的一行解释:
假设了我们的hash算法就是简单的用key mod 一下表的大小(也就是数组的长度)。
其中的哈希桶数组table的size=2, 所以key = 3、7、5,put顺序依次为 5、7、3。在mod 2以后都冲突在table[1]这里了。这里假设负载因子 loadFactor=1,即当键值对的实际大小size 大于 table的实际大小时进行扩容。接下来的三个步骤是哈希桶数组 resize成4,然后所有的Node重新rehash的过程。
下面我们讲解下JDK1.8做了哪些优化。经过观测可以发现,我们使用的是2次幂的扩展(指长度扩为原来2倍),所以,
经过rehash之后,元素的位置要么是在原位置,要么是在原位置再移动2次幂的位置。对应的就是下方的resize的注释。
- /**
- * Initializes or doubles table size. If null, allocates in
- * accord with initial capacity target held in field threshold.
- * Otherwise, because we are using power-of-two expansion, the
- * elements from each bin must either stay at same index, or move
- * with a power of two offset in the new table.
- *
- * @return the table
- */
- final Node<K,V>[] resize() {
看下图可以明白这句话的意思,n为table的长度,图(a)表示扩容前的key1和key2两种key确定索引位置的示例,图(b)表示扩容后key1和key2两种key确定索引位置的示例,其中hash1是key1对应的哈希值(也就是根据key1算出来的hashcode值)与高位与运算的结果。
元素在重新计算hash之后,因为n变为2倍,那么n-1的mask范围在高位多1bit(红色),因此新的index就会发生这样的变化:
因此,我们在扩充HashMap的时候,不需要像JDK1.7的实现那样重新计算hash,只需要看看原来的hash值新增的那个bit是1还是0就好了,是0的话索引没变,是1的话索引变成“原索引+oldCap”,可以看看下图为16扩充为32的resize示意图:
我是 没看懂他连个图是怎么前后对应的,谁看懂了,交流哈赛。
当时上面这个图,没看懂,是因为,他就没说每个节点的hashcode是啥,他怎么确定是保留在原来的位置,还是说在原来位置的基础上再加个原来数组的长度呢。所以,上面那个图仅仅具有丁点儿参考价值。
这个设计确实非常的巧妙,既省去了重新计算hash值的时间,而且同时,由于新增的1bit是0还是1可以认为是随机的,因此resize的过程,均匀的把之前的冲突的节点分散到新的bucket了。这一块就是JDK1.8新增的优化点。有一点注意区别,JDK1.7中rehash的时候,旧链表迁移新链表的时候,如果在新表的数组索引位置相同,则链表元素会倒置,但是从上图可以看出,JDK1.8不会倒置。有兴趣的同学可以研究下JDK1.8的resize源码,写的很赞,如下:
1 final Node<K,V>[] resize() {
2 Node<K,V>[] oldTab = table;
3 int oldCap = (oldTab == null) ? 0 : oldTab.length;
4 int oldThr = threshold;
5 int newCap, newThr = 0;
6 if (oldCap > 0) {
7 // 超过最大值就不再扩充了,就只好随你碰撞去吧
8 if (oldCap >= MAXIMUM_CAPACITY) {
9 threshold = Integer.MAX_VALUE;
10 return oldTab;
11 }
12 // 没超过最大值,就扩充为原来的2倍
13 else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
14 oldCap >= DEFAULT_INITIAL_CAPACITY)
15 newThr = oldThr << 1; // double threshold
16 }
17 else if (oldThr > 0) // initial capacity was placed in threshold
18 newCap = oldThr;
19 else { // zero initial threshold signifies using defaults
20 newCap = DEFAULT_INITIAL_CAPACITY;
21 newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
22 }
23 // 计算新的resize上限
24 if (newThr == 0) {
25
26 float ft = (float)newCap * loadFactor;
27 newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
28 (int)ft : Integer.MAX_VALUE);
29 }
30 threshold = newThr;
31 @SuppressWarnings({"rawtypes","unchecked"})
32 Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
33 table = newTab;
34 if (oldTab != null) {
35 // 把每个bucket都移动到新的buckets中
36 for (int j = 0; j < oldCap; ++j) {
37 Node<K,V> e;
38 if ((e = oldTab[j]) != null) {
39 oldTab[j] = null;
40 if (e.next == null)
41 newTab[e.hash & (newCap - 1)] = e;
42 else if (e instanceof TreeNode)
43 ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
44 else { // 链表优化重hash的代码块
45 Node<K,V> loHead = null, loTail = null;
46 Node<K,V> hiHead = null, hiTail = null;
47 Node<K,V> next;
48 do {
49 next = e.next;
50 // 原索引
51 if ((e.hash & oldCap) == 0) {
52 if (loTail == null)
53 loHead = e;
54 else
55 loTail.next = e;
56 loTail = e;
57 }
58 // 原索引+oldCap
59 else {
60 if (hiTail == null)
61 hiHead = e;
62 else
63 hiTail.next = e;
64 hiTail = e;
65 }
66 } while ((e = next) != null);
67 // 原索引放到bucket里
68 if (loTail != null) {
69 loTail.next = null;
70 newTab[j] = loHead;
71 }
72 // 原索引+oldCap放到bucket里
73 if (hiTail != null) {
74 hiTail.next = null;
75 newTab[j + oldCap] = hiHead;
76 }
77 }
78 }
79 }
80 }
81 return newTab;
82 }
更多推荐
所有评论(0)