etcd是一个键值存储仓库,用于配置共享服务发现

A highly-available key value store for shared configuration and service discovery.

实际上,etcd作为一个受到ZooKeeper与doozer启发而催生的项目,除了拥有与之类似的功能外,更专注于以下四点。

  • 简单:基于HTTP+JSON的API让你用curl就可以轻松使用。
  • 安全:可选SSL客户认证机制。
  • 快速:每个实例每秒支持一千次写操作
  • 可信:使用Raft算法充分实现了分布式。

值得注意的是,分布式系统中的数据分为控制数据和应用数据。使用etcd的场景默认处理的数据都是控制数据,对于应用数据,只推荐数据量很小,但是更新访问频繁的情况

1. 实现原理

Etcd使用Raft算法将一组主机组成集群,Raft 集群中的每个节点都可以根据集群运行的情况在三种状态间切换:follower, candidateleader。leader 和 follower 之间保持心跳。如果follower在一段时间内没有收到来自leader的心跳,就会转为candidate,发出新的选主请求。

集群初始化的时候内部的节点都是follower节点,之后会有一个节点因为没有收到leader的心跳转为candidate节点,发起选主请求。当这个节点获得了大于一半节点的投票后会转为leader节点。当leader节点服务异常后,其中的某个follower节点因为没有收到leader的心跳转为candidate节点,发起选主请求。

只要集群中剩余的正常节点数目大于集群内主机数目的一半,Etcd集群就可以正常对外提供服务。如果集群多数节点损坏,集群就失去了写入数据的能力。官方推荐3,5,7为etcd cluster数目,其中7可以满足大部分情况。当集群内部的网络出现故障集群可能会出现“脑裂”问题,这个时候集群会分为一大一小两个集群(奇数节点的集群),较小的集群会处于异常状态,较大的集群可以正常对外提供服务。

1.1 架构

这里写图片描述

从etcd的架构图中我们可以看到,etcd主要分为四个部分。

  • HTTP Server: 用于处理用户发送的API请求以及其它etcd节点的同步与心跳信息请求。
  • Store:用于处理etcd支持的各类功能的事务,包括数据索引节点状态变更监控与反馈事件处理与执行等等,是etcd对用户提供的大多数API功能的具体实现。
  • Raft:Raft强一致性算法的具体实现,是etcd的核心。
  • WAL(Write Ahead Log, 预写式日志):是etcd的数据存储方式。除了在内存中存有所有数据的状态以及节点的索引以外,etcd就通过WAL进行持久化存储。WAL中,所有的数据提交前都会事先记录日志Snapshot是为了防止数据过多而进行的状态快照,存储etcd数据状态;Entry表示存储的具体日志内容。

通常,一个用户的请求发送过来,会经由HTTP Server转发给Store进行具体的事务处理,如果涉及到节点的修改,则交给Raft模块进行状态的变更、日志的记录,然后再同步给别的etcd节点以确认数据提交,最后进行数据的提交,再次同步。


1.2 概念词汇表

  • Raft:etcd所采用的保证分布式系统强一致性的算法。
  • Node:一个Raft状态机实例。
  • Member: 一个etcd实例。它管理着一个Node,并且可以为客户端请求提供服务。
  • Cluster:由多个Member构成可以协同工作的etcd集群。
  • Peer:对同一个etcd集群中另外一个Member的称呼。
  • Client: 向etcd集群发送HTTP请求的客户端。
  • WAL:预写式日志,etcd用于持久化存储的日志格式。
  • snapshot:etcd防止WAL文件过多而设置的快照,存储etcd数据状态。
  • Proxy:etcd的一种模式,为etcd集群提供反向代理服务。
  • Leader:Raft算法中通过竞选而产生的处理所有数据提交的节点。
  • Follower:竞选失败的节点作为Raft中的从属节点,为算法提供强一致性保证。
  • Candidate:当Follower超过一定时间接收不到Leader的心跳时转变为Candidate开始竞选。
  • Term:某个节点成为Leader到下一次竞选时间,称为一个Term。
  • Index:数据项编号。Raft中通过Term和Index来定位数据。

1.3 Proxy模式

Proxy模式也是新版etcd的一个重要变更,etcd作为一个反向代理把客户的请求转发给可用的etcd集群。这样,你就可以在每一台机器都部署一个Proxy模式的etcd作为本地服务,如果这些etcd Proxy都能正常运行,那么你的服务发现必然是稳定可靠的。
这里写图片描述

所以Proxy并不是直接加入到符合强一致性的etcd集群中,也同样的,Proxy并没有增加集群的可靠性,当然也没有降低集群的写入性能。

Proxy取代Standby模式的原因
那么,为什么要有Proxy模式而不是直接增加etcd核心节点呢?实际上etcd每增加一个核心节点(peer),都会增加Leader节点一定程度的包括网络、CPU和磁盘的负担,因为每次信息的变化都需要进行同步备份。增加etcd的核心节点可以让整个集群具有更高的可靠性,但是当数量达到一定程度以后,增加可靠性带来的好处就变得不那么明显,反倒是降低了集群写入同步的性能。因此,增加一个轻量级的Proxy模式etcd节点是对直接增加etcd核心节点的一个有效代替。

熟悉0.4.6这个旧版本etcd的用户会发现,Proxy模式实际上是取代了原先的Standby模式。Standby模式除了转发代理的功能以外,还会在核心节点因为故障导致数量不足的时候,从Standby模式转为正常节点模式。而当那个故障的节点恢复时,发现etcd的核心节点数量已经达到的预先设置的值,就会转为Standby模式。但是新版etcd中,只会在最初启动etcd集群时,发现核心节点的数量已经满足要求时,自动启用Proxy模式,反之则并未实现。


1.4 数据存储

etcd的存储分为内存存储持久化存储两部分,内存中的存储除了顺序化的记录下所有用户对节点数据变更的记录外,还会对用户数据进行索引、建堆等方便查询的操作。而持久化则使用预写式日志(WAL:Write Ahead Log)进行记录存储。

在WAL的体系中,所有的数据在提交之前都会进行日志记录。在etcd的持久化存储目录中,有两个子目录。一个是WAL,存储着所有事务的变化记录;另一个则是snapshot,用于存储某一个时刻etcd所有目录的数据。通过WAL和snapshot相结合的方式,etcd可以有效的进行数据存储和节点故障恢复等操作。

既然有了WAL实时存储了所有的变更,为什么还需要snapshot呢?随着使用量的增加,WAL存储的数据会暴增,为了防止磁盘很快就爆满,etcd默认每10000条记录做一次snapshot,经过snapshot以后的WAL文件就可以删除。而通过API可以查询的历史etcd操作默认为1000条。

首次启动时,etcd会把启动的配置信息存储到data-dir参数指定的数据目录中。配置信息包括本地节点的ID、集群ID和初始时集群信息。用户需要避免etcd从一个过期的数据目录中重新启动,因为使用过期的数据目录启动的节点会与集群中的其他节点产生不一致(如:之前已经记录并同意Leader节点存储某个信息,重启后又向Leader节点申请这个信息)。所以,为了最大化集群的安全性,一旦有任何数据损坏或丢失的可能性,你就应该把这个节点从集群中移除,然后加入一个不带数据目录的新节点。

预写式日志(WAL)

WAL(Write Ahead Log)最大的作用是记录了整个数据变化的全部历程。在etcd中,所有数据的修改在提交前,都要先写入到WAL中。使用WAL进行数据的存储使得etcd拥有两个重要功能。

  • 故障快速恢复: 当你的数据遭到破坏时,就可以通过执行所有WAL中记录的修改操作,快速从最原始的数据恢复到数据损坏前的状态。
  • 数据回滚(undo)/重做(redo):因为所有的修改操作都被记录在WAL中,需要回滚或重做,只需要方向或正向执行日志中的操作即可。

2. 应用场景

2.1 服务发现(Service Discovery)

服务发现要解决的也是分布式系统中最常见的问题之一,即在同一个分布式集群中的进程或服务,要如何才能找到对方并建立连接。本质上来说,服务发现就是想要了解集群中是否有进程在监听udp或tcp端口,并且通过名字就可以查找和连接。要解决服务发现的问题,需要有下面三大支柱,缺一不可。

(1)注册IP

通过服务发现机制,在etcd中注册某个服务名字的目录,在该目录下存储可用的服务节点的IP。在使用服务的过程中,只要从服务目录下查找可用的服务节点去使用即可。

(2)注册域名和域名解析

PaaS平台中的应用一般都有多个实例,通过域名,不仅可以透明的对这多个实例进行访问,而且还可以做到负载均衡。但是应用的某个实例随时都有可能故障重启,这时就需要动态的配置域名解析(路由)中的信息。通过etcd的服务发现功能就可以轻松解决这个动态配置的问题。


2.2 消息发布与订阅

在分布式系统中,最适用的一种组件间通信方式就是消息发布与订阅。即构建一个配置共享中心,数据提供者在这个配置中心发布消息,而消息使用者则订阅他们关心的主题,一旦主题有消息发布,就会实时通知订阅者。通过这种方式可以做到分布式系统配置的集中式管理与动态更新。

(1)配置信息

应用中用到的一些配置信息放到etcd上进行集中管理。这类场景的使用方式通常是这样:应用在启动的时候主动从etcd获取一次配置信息,同时,在etcd节点上注册一个Watcher并等待,以后每次配置有更新的时候,etcd都会实时通知订阅者,以此达到获取最新配置信息的目的。

(2)索引的元信息和服务器集群机器的节点状态存放在etcd中

使用etcd的key TTL功能可以确保机器状态是实时更新的。

(3)分布式日志收集系统

这个系统的核心工作是收集分布在不同机器的日志。收集器通常是按照应用(或主题)来分配收集任务单元,因此可以在etcd上创建一个以应用(主题)命名的目录P,并将这个应用(主题相关)的所有机器ip,以子目录的形式存储到目录P上,然后设置一个etcd递归的Watcher,递归式的监控应用(主题)目录下所有信息的变动。这样就实现了机器IP(消息)变动的时候,能够实时通知到收集器调整任务分配。


2.3 负载均衡

在场景一中也提到了负载均衡,本文所指的负载均衡均为软负载均衡。分布式系统中,为了保证服务的高可用以及数据的一致性,通常都会把数据和服务部署多份,以此达到对等服务,即使其中的某一个服务失效了,也不影响使用。由此带来的坏处是数据写入性能下降,而好处则是数据访问时的负载均衡。因为每个对等服务节点上都存有完整的数据,所以用户的访问流量就可以分流到不同的机器上。

(1)etcd存储访问频繁地小数据

etcd集群化以后,每个etcd的核心节点都可以处理用户的请求。所以,把数据量小但是访问频繁的消息数据直接存储到etcd中也是个不错的选择,如业务系统中常用的二级代码表(在表中存储代码,在etcd中存储代码所代表的具体含义,业务系统调用查表的过程,就需要查找表中代码的含义)。

(2)利用etcd维护一个负载均衡节点表

etcd可以监控一个集群中多个节点的状态,当有一个请求发过来后,可以轮询式的把请求转发给存活着的多个状态。类似KafkaMQ,通过ZooKeeper来维护生产者和消费者的负载均衡。同样也可以用etcd来做ZooKeeper的工作。


2.4 分布式锁

因为etcd使用Raft算法保持了数据的强一致性,某次操作存储到集群中的值必然是全局一致的,所以很容易实现分布式锁。锁服务有两种使用方式,一是保持独占,二是控制时序。

(1)保持独占

etcd为此提供了一套实现分布式锁原子操作CAS(CompareAndSwap)的API。通过设置prevExist值,可以保证在多个节点同时去创建某个目录时,只有一个成功。而创建成功的用户就可以认为是获得了锁。

(2)控制时序

即所有想要获得锁的用户都会被安排执行,但是获得锁的顺序也是全局唯一的,同时决定了执行顺序。etcd为此也提供了一套API(自动创建有序键),对一个目录建值时指定为POST动作,这样etcd会自动在目录下生成一个当前最大的值为键,存储这个新的值(客户端编号)。同时还可以使用API按顺序列出所有当前目录下的键值。此时这些键的值就是客户端的时序,而这些键中存储的值可以是代表客户端的编号。


3. Etcd与ZooKeeper对比

3.1 ZooKeeper的缺点

(1)复杂

ZooKeeper的部署维护复杂,管理员需要掌握一系列的知识和技能;而Paxos强一致性算法也是素来以复杂难懂而闻名于世;另外,ZooKeeper的使用也比较复杂,需要安装客户端,官方只提供了Java和C两种语言的接口。

(2)Java编写

这里不是对Java有偏见,而是Java本身就偏向于重型应用,它会引入大量的依赖。而运维人员则普遍希望保持强一致、高可用的机器集群尽可能简单,维护起来也不易出错。

(3)发展缓慢

ZooKeeper社区基本上快死了,Etcd正活跃。

3.2 etcd的优点

而etcd作为一个后起之秀,其优点也很明显。

  1. 简单。使用Go语言编写部署简单;使用HTTP作为接口使用简单;使用Raft算法保证强一致性让用户易于理解
  2. 数据持久化。etcd默认数据一更新就进行持久化。
  3. 安全。etcd支持SSL客户端安全认证。
Logo

权威|前沿|技术|干货|国内首个API全生命周期开发者社区

更多推荐