学习vector请看官方API

https://docs.oracle.com/javase/7/docs/api/java/util/Vector.html

学习参考资料

http://www.cnblogs.com/skywang12345/p/3308833.html

学习vector请看源代码   自己还没有全部看完 看了一大半 还有后面一部分没有看完

/*
//底层通过数组实现  原始容量为10  增加系数可是自己定或者直接两倍
The Vector class implements a growable array of objects. 
Like an array, it contains components that can be accessed using an integer index.
However, the size of a Vector can grow or shrink as needed to accommodate adding and removing items after the Vector has been created.
Each vector tries to optimize storage management by maintaining a capacity and a capacityIncrement. The capacity is always at least as large as the vector size; it is usually larger because as components are added to the vector, the vector's storage increases in chunks the size of capacityIncrement. An application can increase the capacity of a vector before inserting a large number of components; this reduces the amount of incremental reallocation.


//迭代器 只能是自己add remove等不会报异常 对于其他其他迭代器修改的就是会报错  
//Enumerations就不会报错 即便是有别的线程对其进行修改  看两者的源代码就知道了 
//迭代器  每次都是会有一个 checkForComodification();  就是去判断modcount是否等于expectedcount 这点可以去fail-fast文章去看更详细的内容
The iterators returned by this class's iterator and listIterator methods are fail-fast: if the vector is structurally modified at any time after the iterator is created, in any way except through the iterator's own remove or add methods, the iterator will throw a ConcurrentModificationException. 
Thus, in the face of concurrent modification, the iterator fails quickly and cleanly, rather than risking arbitrary, non-deterministic behavior at an undetermined time in the future. 
The Enumerations returned by the elements method are not fail-fast.

//fail-fast不能是能够报异常的 只能是尽最大能力去报错
Note that the fail-fast behavior of an iterator cannot be guaranteed as it is, generally speaking, impossible to make any hard guarantees in the presence of unsynchronized concurrent modification. 
Fail-fast iterators throw ConcurrentModificationException on a best-effort basis. 
Therefore, it would be wrong to write a program that depended on this exception for its correctness: the fail-fast behavior of iterators should be used only to detect bugs.

As of the Java 2 platform v1.2, this class was retrofitted to implement the List interface, making it a member of the Java Collections Framework. Unlike the new collection implementations, Vector is synchronized. If a thread-safe implementation is not needed, it is recommended to use ArrayList in place of Vector.
*/



public class Vector<E>
    extends AbstractList<E>
    implements List<E>, RandomAccess, Cloneable, java.io.Serializable
{
   //保存vector中数据的数组
    protected Object[] elementData;

   //数组元素数量
    protected int elementCount;

    //容量增长系数  如果小于等于0  则每次数组容量都增加为原来的两倍
    protected int capacityIncrement;

    //Vector版本序列号
    private static final long serialVersionUID = -2767605614048989439L;

    //默认容量为10
    public Vector() {
        this(10);
    }

    //指定vector容量大小的构造函数
    public Vector(int initialCapacity) {
        this(initialCapacity, 0);
    }

    //指定Vector容量大小和增长系数的构造函数
    public Vector(int initialCapacity, int capacityIncrement) {
        super();//调用抽象类AbstractList默认构造函数
        if (initialCapacity < 0)
            throw new IllegalArgumentException("Illegal Capacity: "+
                                               initialCapacity);
        this.elementData = new Object[initialCapacity];
        this.capacityIncrement = capacityIncrement;
    }

   //指定集合的Vector的构造函数
    public Vector(Collection<? extends E> c) {
        elementData = c.toArray();
        elementCount = elementData.length;
        // c.toArray might (incorrectly) not return Object[] (see 6260652)
        if (elementData.getClass() != Object[].class)
            elementData = Arrays.copyOf(elementData, elementCount, Object[].class);
    }

   //将数组Vector的全部元素都拷贝到数组anArray中
    public synchronized void copyInto(Object[] anArray) {
        System.arraycopy(elementData, 0, anArray, 0, elementCount);
    }

    //将当前容量值减少为实际元素个数
    public synchronized void trimToSize() {
        modCount++;
        int oldCapacity = elementData.length;
        if (elementCount < oldCapacity) {
            elementData = Arrays.copyOf(elementData, elementCount);
        }
    }

    //调整数组长度  
     public synchronized void setSize(int newSize) {
        modCount++;
        if (newSize > elementCount) {
            ensureCapacityHelper(newSize);
        } else {
            //如果比原来的数组长度小 就需要将其后面的元素设置成null
            for (int i = newSize ; i < elementCount ; i++) {
                elementData[i] = null;
            }
        }
        elementCount = newSize;
    }

   //确定数组长度是否需要增加
    public synchronized void ensureCapacity(int minCapacity) {
        if (minCapacity > 0) {
            modCount++;
            ensureCapacityHelper(minCapacity);
        }
    }

    private void ensureCapacityHelper(int minCapacity) {
        //当现有数组长度小于我们最小要求数的时候 就需要增加数组长度
        if (minCapacity - elementData.length > 0)
            grow(minCapacity);
    }

    //不同虚拟申请最大数是不一样的 有一些会保留一些头部信息
    private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
    private void grow(int minCapacity) {
        // overflow-conscious code
        int oldCapacity = elementData.length;
        int newCapacity = oldCapacity + ((capacityIncrement > 0) ?
                                         capacityIncrement : oldCapacity);
        if (newCapacity - minCapacity < 0)
            newCapacity = minCapacity;
        if (newCapacity - MAX_ARRAY_SIZE > 0)
            newCapacity = hugeCapacity(minCapacity);
        elementData = Arrays.copyOf(elementData, newCapacity);
    }

    //最大申请数组长度
    private static int hugeCapacity(int minCapacity) {
        if (minCapacity < 0) 
            throw new OutOfMemoryError();
        return (minCapacity > MAX_ARRAY_SIZE) ?
            Integer.MAX_VALUE :
            MAX_ARRAY_SIZE;
    }

    //返回数组总长度
    public synchronized int capacity() {
        return elementData.length;
    }

    //返回数组当前元素个数
    public synchronized int size() {
        return elementCount;
    }

    //判断Vector是否为空
    public synchronized boolean isEmpty() {
        return elementCount == 0;
    }


    //返回Vector中全部元素对应的Enumeration
    public Enumeration<E> elements() {
        return new Enumeration<E>() {//通过匿名类实现Enumeration
            int count = 0;

            //是否存在下一个元素
            public boolean hasMoreElements() {
                return count < elementCount;
            }

            //获取下一个元素
            public E nextElement() {
                synchronized (Vector.this) {
                    if (count < elementCount) {
                        return elementData(count++);
                    }
                }
                throw new NoSuchElementException("Vector Enumeration");
            }
        };
    }

    //从index位置开始判断是否有对象o  需要分别对象o是否为null
    public synchronized int indexOf(Object o, int index) {
        if (o == null) {
            for (int i = index ; i < elementCount ; i++)
                if (elementData[i]==null)
                    return i;
        } else {
            for (int i = index ; i < elementCount ; i++)
                if (o.equals(elementData[i]))
                    return i;
        }
        return -1;
    }

    public int indexOf(Object o) {
        return indexOf(o, 0);
    }

    //返回元素中是否包含对象o
    public boolean contains(Object o) {
        return indexOf(o, 0) >= 0;
    }

   //相比较于前面indexof 这里的lastindexof是从后面往前面遍历  对象o也是需要判断是否为null 两种情况进行遍历查找
    public synchronized int lastIndexOf(Object o, int index) {
        if (index >= elementCount)
            throw new IndexOutOfBoundsException(index + " >= "+ elementCount);

        if (o == null) {
            for (int i = index; i >= 0; i--)
                if (elementData[i]==null)
                    return i;
        } else {
            for (int i = index; i >= 0; i--)
                if (o.equals(elementData[i]))
                    return i;
        }
        return -1;
    }

    public synchronized int lastIndexOf(Object o) {
        return lastIndexOf(o, elementCount-1);
    }

    //通过下标去获取元素
    public synchronized E elementAt(int index) {
        if (index >= elementCount) {//首先需要判断元素下标位置
            throw new ArrayIndexOutOfBoundsException(index + " >= " + elementCount);
        }
        return elementData(index);
    }

    //获取首个元素  但是需要注意数组是否为空  不然会报错
    public synchronized E firstElement() {
        if (elementCount == 0) {
            throw new NoSuchElementException();
        }
        return elementData(0);
    }

    //获取最后一个元素
    public synchronized E lastElement() {
        if (elementCount == 0) {
            throw new NoSuchElementException();
        }
        return elementData(elementCount - 1);
    }

    //和上面的第一个、最后一个元素 都是需要考虑边界情况
    public synchronized void setElementAt(E obj, int index) {
        if (index >= elementCount) {
            throw new ArrayIndexOutOfBoundsException(index + " >= " +
                                                     elementCount);
        }
        elementData[index] = obj;
    }

    public synchronized void removeElementAt(int index) {
        modCount++;  //删除元素属于结构性修改
        if (index >= elementCount) {
            throw new ArrayIndexOutOfBoundsException(index + " >= " +
                                                     elementCount);
        }
        else if (index < 0) {
            throw new ArrayIndexOutOfBoundsException(index);
        }
        int j = elementCount - index - 1;
        if (j > 0) {//后面的元素从后往前移动
            System.arraycopy(elementData, index + 1, elementData, index, j);
        }
        elementCount--;//元素个数减一
        //记得将最后一个元素设置成null  能够gc
        elementData[elementCount] = null; /* to let gc do its work */
    }

   
    public synchronized void insertElementAt(E obj, int index) {
        modCount++;//增加元素也属于结构性修改
        if (index > elementCount) {
            throw new ArrayIndexOutOfBoundsException(index
                                                     + " > " + elementCount);
        }
        //但是需要去判断是否数组的长度是否满足当前的要求
        ensureCapacityHelper(elementCount + 1);
        System.arraycopy(elementData, index, elementData, index + 1, elementCount - index);
        elementData[index] = obj;
        elementCount++;//减少的时候需要让gc能够去回收  即设置成null
    }

    //同样是增加元素 但是需要注意是否有返回值
    public synchronized void addElement(E obj) {
        modCount++;
        ensureCapacityHelper(elementCount + 1);
        elementData[elementCount++] = obj;
    }

     public synchronized boolean add(E e) {
        modCount++;
        ensureCapacityHelper(elementCount + 1);
        elementData[elementCount++] = e;
        return true;
    }

    public void add(int index, E element) {
        insertElementAt(element, index);
    }

    public synchronized boolean removeElement(Object obj) {
        modCount++;
        int i = indexOf(obj);//首先判断对象中是否有其元素
        if (i >= 0) {
            removeElementAt(i);
            return true;
        }
        return false;
    }

    public boolean remove(Object o) {
        return removeElement(o);
    }

    public synchronized E remove(int index) {
        modCount++;
        if (index >= elementCount)
            throw new ArrayIndexOutOfBoundsException(index);
        E oldValue = elementData(index);

        int numMoved = elementCount - index - 1;
        if (numMoved > 0)
            System.arraycopy(elementData, index+1, elementData, index,
                             numMoved);
        elementData[--elementCount] = null; // Let gc do its work

        return oldValue;
    }

  //在java中 移除数组所有元素 只需要将其内容设置成null即可
    public synchronized void removeAllElements() {
        modCount++;
        // Let gc do its work
        for (int i = 0; i < elementCount; i++)
            elementData[i] = null;
        elementCount = 0;
    }

    public void clear() {
        removeAllElements();
    }

    //克隆函数
    public synchronized Object clone() {
        try {
            @SuppressWarnings("unchecked")
                Vector<E> v = (Vector<E>) super.clone();
                 将当前Vector的全部元素拷贝到v中
            v.elementData = Arrays.copyOf(elementData, elementCount);
            v.modCount = 0;
            return v;
        } catch (CloneNotSupportedException e) {
            // this shouldn't happen, since we are Cloneable
            throw new InternalError(e);
        }
    }

    //返回Object数组
    public synchronized Object[] toArray() {
        return Arrays.copyOf(elementData, elementCount);
    }

    // 返回Vector的模板数组。所谓模板数组,即可以将T设为任意的数据类型
    @SuppressWarnings("unchecked")
    public synchronized <T> T[] toArray(T[] a) {
        // 若数组a的大小 < Vector的元素个数
        // 则新建一个T[]数组,数组大小是“Vector的元素个数”,并将“Vector”全部拷贝到新数组中
        if (a.length < elementCount)
            return (T[]) Arrays.copyOf(elementData, elementCount, a.getClass());
        
        // 若数组a的大小 >= Vector的元素个数;
        // 则将Vector的全部元素都拷贝到数组a中
        System.arraycopy(elementData, 0, a, 0, elementCount);

        //如果是超出的部分 后面数组内容设置为null  
        if (a.length > elementCount)
            a[elementCount] = null;//好像只需要设置后面第一个元素值为null即可

        return a;
    }

    //一个函数的名称和成员属性的名称是一样的  在调用的时候根据是否有括号去区别就可以了
    // Positional Access Operations
    @SuppressWarnings("unchecked")
    E elementData(int index) {
        return (E) elementData[index];
    }

    //注意下标边界
    public synchronized E get(int index) {
        if (index >= elementCount)
            throw new ArrayIndexOutOfBoundsException(index);
        return elementData(index);
    }

   //set注意是有返回值的  返回旧位置上面的元素值
    public synchronized E set(int index, E element) {
        if (index >= elementCount)
            throw new ArrayIndexOutOfBoundsException(index);

        E oldValue = elementData(index);
        elementData[index] = element;
        return oldValue;
    }

    

    // Bulk Operations  批量操作

    /*
    抽象类AbstractCollection  containsAll源代码
    public boolean containsAll(Collection<?> c) {
        for (Object e : c)
            if (!contains(e))
                return false;
        return true;
    }
     */
    public synchronized boolean containsAll(Collection<?> c) {
        return super.containsAll(c);
    }

    public synchronized boolean addAll(Collection<? extends E> c) {
        modCount++;
        Object[] a = c.toArray();
        int numNew = a.length;
        ensureCapacityHelper(elementCount + numNew);//确保容量
        System.arraycopy(a, 0, elementData, elementCount, numNew);//将数组a的内容全部加到数组elementData的后面
        elementCount += numNew;
        return numNew != 0; //如果没有添加新元素 则返回false
    }

   /*
    Objects中的源代码
    public static <T> T requireNonNull(T obj) {
        if (obj == null)
            throw new NullPointerException();
        return obj;
    }

    //将elementData中所有数组c的元素全部删除  如果有元素删除 那么返回true  反之false
    public boolean removeAll(Collection<?> c) {
        Objects.requireNonNull(c);
        boolean modified = false;
        Iterator<?> it = iterator();
        while (it.hasNext()) {
            if (c.contains(it.next())) {
                it.remove();
                modified = true;
            }
        }
        return modified;
    }
   */
    public synchronized boolean removeAll(Collection<?> c) {
        return super.removeAll(c);
    }
    
    /*
    public boolean retainAll(Collection<?> c) {
        Objects.requireNonNull(c);
        boolean modified = false;
        Iterator<E> it = iterator();
        while (it.hasNext()) {
            if (!c.contains(it.next())) {   //只保留和c中数组一样元素内容
                it.remove();
                modified = true;
            }
        }
        return modified;
    }
    */
    public synchronized boolean retainAll(Collection<?> c) {
        return super.retainAll(c);
    }

    
    public synchronized boolean addAll(int index, Collection<? extends E> c) {
        modCount++;
        //检查插入位置
        if (index < 0 || index > elementCount)
            throw new ArrayIndexOutOfBoundsException(index);

        Object[] a = c.toArray();
        int numNew = a.length;
        ensureCapacityHelper(elementCount + numNew);//确保数组容量

        int numMoved = elementCount - index;
        if (numMoved > 0)
            System.arraycopy(elementData, index, elementData, index + numNew,
                             numMoved);

        System.arraycopy(a, 0, elementData, index, numNew);
        elementCount += numNew;
        return numNew != 0;
    }

    /**
     * Compares the specified Object with this Vector for equality.  Returns
     * true if and only if the specified Object is also a List, both Lists
     * have the same size, and all corresponding pairs of elements in the two
     * Lists are <em>equal</em>.  (Two elements {@code e1} and
     * {@code e2} are <em>equal</em> if {@code (e1==null ? e2==null :
     * e1.equals(e2))}.)  In other words, two Lists are defined to be
     * equal if they contain the same elements in the same order.
     *
     * @param o the Object to be compared for equality with this Vector
     * @return true if the specified Object is equal to this Vector
     */
    public synchronized boolean equals(Object o) {
        return super.equals(o);
    }

   /*
        抽象类的AbstractList  hashcode函数
        public int hashCode() {
            int hashCode = 1;
            for (E e : this)
                hashCode = 31*hashCode + (e==null ? 0 : e.hashCode());
            return hashCode;
        }
   */
    public synchronized int hashCode() {
        return super.hashCode();
    }

    /*
     抽象类的AbstractList  toString()函数
     public String toString() {
        Iterator<E> it = iterator();
        if (! it.hasNext())
            return "[]";

        StringBuilder sb = new StringBuilder();
        sb.append('[');
        for (;;) {
            E e = it.next();
            sb.append(e == this ? "(this Collection)" : e);
            if (! it.hasNext())
                return sb.append(']').toString();
            sb.append(',').append(' ');
        }
    }
    */
    public synchronized String toString() {
        return super.toString();
    }

   //子数组
    public synchronized List<E> subList(int fromIndex, int toIndex) {
        return Collections.synchronizedList(super.subList(fromIndex, toIndex),
                                            this);
    }

    /**
     * Removes from this list all of the elements whose index is between
     * {@code fromIndex}, inclusive, and {@code toIndex}, exclusive.
     * Shifts any succeeding elements to the left (reduces their index).
     * This call shortens the list by {@code (toIndex - fromIndex)} elements.
     * (If {@code toIndex==fromIndex}, this operation has no effect.)
     */
    protected synchronized void removeRange(int fromIndex, int toIndex) {
        modCount++;
        int numMoved = elementCount - toIndex;
        System.arraycopy(elementData, toIndex, elementData, fromIndex,
                         numMoved);

        // Let gc do its work
        int newElementCount = elementCount - (toIndex-fromIndex);
        while (elementCount != newElementCount)
            elementData[--elementCount] = null;
    }

    /**
     * Save the state of the {@code Vector} instance to a stream (that
     * is, serialize it).
     * This method performs synchronization to ensure the consistency
     * of the serialized data.
     */
    private void writeObject(java.io.ObjectOutputStream s)
            throws java.io.IOException {
        final java.io.ObjectOutputStream.PutField fields = s.putFields();
        final Object[] data;
        synchronized (this) {
            fields.put("capacityIncrement", capacityIncrement);
            fields.put("elementCount", elementCount);
            data = elementData.clone();
        }
        fields.put("elementData", data);
        s.writeFields();
    }

    /**
     * Returns a list iterator over the elements in this list (in proper
     * sequence), starting at the specified position in the list.
     * The specified index indicates the first element that would be
     * returned by an initial call to {@link ListIterator#next next}.
     * An initial call to {@link ListIterator#previous previous} would
     * return the element with the specified index minus one.
     *
     * <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
     *
     * @throws IndexOutOfBoundsException {@inheritDoc}
     */
    public synchronized ListIterator<E> listIterator(int index) {
        if (index < 0 || index > elementCount)
            throw new IndexOutOfBoundsException("Index: "+index);
        return new ListItr(index);
    }

    /**
     * Returns a list iterator over the elements in this list (in proper
     * sequence).
     *
     * <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
     *
     * @see #listIterator(int)
     */
    public synchronized ListIterator<E> listIterator() {
        return new ListItr(0);
    }

    /**
     * Returns an iterator over the elements in this list in proper sequence.
     *
     * <p>The returned iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
     *
     * @return an iterator over the elements in this list in proper sequence
     */
    public synchronized Iterator<E> iterator() {
        return new Itr();
    }

    /**
     * An optimized version of AbstractList.Itr
     */
    private class Itr implements Iterator<E> {
        int cursor;       // index of next element to return
        int lastRet = -1; // index of last element returned; -1 if no such
        int expectedModCount = modCount;

        public boolean hasNext() {
            // Racy but within spec, since modifications are checked
            // within or after synchronization in next/previous
            return cursor != elementCount;
        }

        public E next() {
            synchronized (Vector.this) {
                checkForComodification();
                int i = cursor;
                if (i >= elementCount)
                    throw new NoSuchElementException();
                cursor = i + 1;
                return elementData(lastRet = i);
            }
        }

        public void remove() {
            if (lastRet == -1)
                throw new IllegalStateException();
            synchronized (Vector.this) {
                checkForComodification();
                Vector.this.remove(lastRet);
                expectedModCount = modCount;
            }
            cursor = lastRet;
            lastRet = -1;
        }

        @Override
        public void forEachRemaining(Consumer<? super E> action) {
            Objects.requireNonNull(action);
            synchronized (Vector.this) {
                final int size = elementCount;
                int i = cursor;
                if (i >= size) {
                    return;
                }
        @SuppressWarnings("unchecked")
                final E[] elementData = (E[]) Vector.this.elementData;
                if (i >= elementData.length) {
                    throw new ConcurrentModificationException();
                }
                while (i != size && modCount == expectedModCount) {
                    action.accept(elementData[i++]);
                }
                // update once at end of iteration to reduce heap write traffic
                cursor = i;
                lastRet = i - 1;
                checkForComodification();
            }
        }

        final void checkForComodification() {
            if (modCount != expectedModCount)
                throw new ConcurrentModificationException();
        }
    }

    /**
     * An optimized version of AbstractList.ListItr
     */
    final class ListItr extends Itr implements ListIterator<E> {
        ListItr(int index) {
            super();
            cursor = index;
        }

        public boolean hasPrevious() {
            return cursor != 0;
        }

        public int nextIndex() {
            return cursor;
        }

        public int previousIndex() {
            return cursor - 1;
        }

        public E previous() {
            synchronized (Vector.this) {
                checkForComodification();
                int i = cursor - 1;
                if (i < 0)
                    throw new NoSuchElementException();
                cursor = i;
                return elementData(lastRet = i);
            }
        }

        public void set(E e) {
            if (lastRet == -1)
                throw new IllegalStateException();
            synchronized (Vector.this) {
                checkForComodification();
                Vector.this.set(lastRet, e);
            }
        }

        public void add(E e) {
            int i = cursor;
            synchronized (Vector.this) {
                checkForComodification();
                Vector.this.add(i, e);
                expectedModCount = modCount;
            }
            cursor = i + 1;
            lastRet = -1;
        }
    }

    @Override
    public synchronized void forEach(Consumer<? super E> action) {
        Objects.requireNonNull(action);
        final int expectedModCount = modCount;
        @SuppressWarnings("unchecked")
        final E[] elementData = (E[]) this.elementData;
        final int elementCount = this.elementCount;
        for (int i=0; modCount == expectedModCount && i < elementCount; i++) {
            action.accept(elementData[i]);
        }
        if (modCount != expectedModCount) {
            throw new ConcurrentModificationException();
        }
    }

    @Override
    @SuppressWarnings("unchecked")
    public synchronized boolean removeIf(Predicate<? super E> filter) {
        Objects.requireNonNull(filter);
        // figure out which elements are to be removed
        // any exception thrown from the filter predicate at this stage
        // will leave the collection unmodified
        int removeCount = 0;
        final int size = elementCount;
        final BitSet removeSet = new BitSet(size);
        final int expectedModCount = modCount;
        for (int i=0; modCount == expectedModCount && i < size; i++) {
            @SuppressWarnings("unchecked")
            final E element = (E) elementData[i];
            if (filter.test(element)) {
                removeSet.set(i);
                removeCount++;
            }
        }
        if (modCount != expectedModCount) {
            throw new ConcurrentModificationException();
        }

        // shift surviving elements left over the spaces left by removed elements
        final boolean anyToRemove = removeCount > 0;
        if (anyToRemove) {
            final int newSize = size - removeCount;
            for (int i=0, j=0; (i < size) && (j < newSize); i++, j++) {
                i = removeSet.nextClearBit(i);
                elementData[j] = elementData[i];
            }
            for (int k=newSize; k < size; k++) {
                elementData[k] = null;  // Let gc do its work
            }
            elementCount = newSize;
            if (modCount != expectedModCount) {
                throw new ConcurrentModificationException();
            }
            modCount++;
        }

        return anyToRemove;
    }

    @Override
    @SuppressWarnings("unchecked")
    public synchronized void replaceAll(UnaryOperator<E> operator) {
        Objects.requireNonNull(operator);
        final int expectedModCount = modCount;
        final int size = elementCount;
        for (int i=0; modCount == expectedModCount && i < size; i++) {
            elementData[i] = operator.apply((E) elementData[i]);
        }
        if (modCount != expectedModCount) {
            throw new ConcurrentModificationException();
        }
        modCount++;
    }

    @SuppressWarnings("unchecked")
    @Override
    public synchronized void sort(Comparator<? super E> c) {
        final int expectedModCount = modCount;
        Arrays.sort((E[]) elementData, 0, elementCount, c);
        if (modCount != expectedModCount) {
            throw new ConcurrentModificationException();
        }
        modCount++;
    }

    /**
     * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
     * and <em>fail-fast</em> {@link Spliterator} over the elements in this
     * list.
     *
     * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
     * {@link Spliterator#SUBSIZED}, and {@link Spliterator#ORDERED}.
     * Overriding implementations should document the reporting of additional
     * characteristic values.
     *
     * @return a {@code Spliterator} over the elements in this list
     * @since 1.8
     */
    @Override
    public Spliterator<E> spliterator() {
        return new VectorSpliterator<>(this, null, 0, -1, 0);
    }

    /** Similar to ArrayList Spliterator */
    static final class VectorSpliterator<E> implements Spliterator<E> {
        private final Vector<E> list;
        private Object[] array;
        private int index; // current index, modified on advance/split
        private int fence; // -1 until used; then one past last index
        private int expectedModCount; // initialized when fence set

        /** Create new spliterator covering the given  range */
        VectorSpliterator(Vector<E> list, Object[] array, int origin, int fence,
                          int expectedModCount) {
            this.list = list;
            this.array = array;
            this.index = origin;
            this.fence = fence;
            this.expectedModCount = expectedModCount;
        }

        private int getFence() { // initialize on first use
            int hi;
            if ((hi = fence) < 0) {
                synchronized(list) {
                    array = list.elementData;
                    expectedModCount = list.modCount;
                    hi = fence = list.elementCount;
                }
            }
            return hi;
        }

        public Spliterator<E> trySplit() {
            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
            return (lo >= mid) ? null :
                new VectorSpliterator<E>(list, array, lo, index = mid,
                                         expectedModCount);
        }

        @SuppressWarnings("unchecked")
        public boolean tryAdvance(Consumer<? super E> action) {
            int i;
            if (action == null)
                throw new NullPointerException();
            if (getFence() > (i = index)) {
                index = i + 1;
                action.accept((E)array[i]);
                if (list.modCount != expectedModCount)
                    throw new ConcurrentModificationException();
                return true;
            }
            return false;
        }

        @SuppressWarnings("unchecked")
        public void forEachRemaining(Consumer<? super E> action) {
            int i, hi; // hoist accesses and checks from loop
            Vector<E> lst; Object[] a;
            if (action == null)
                throw new NullPointerException();
            if ((lst = list) != null) {
                if ((hi = fence) < 0) {
                    synchronized(lst) {
                        expectedModCount = lst.modCount;
                        a = array = lst.elementData;
                        hi = fence = lst.elementCount;
                    }
                }
                else
                    a = array;
                if (a != null && (i = index) >= 0 && (index = hi) <= a.length) {
                    while (i < hi)
                        action.accept((E) a[i++]);
                    if (lst.modCount == expectedModCount)
                        return;
                }
            }
            throw new ConcurrentModificationException();
        }

        public long estimateSize() {
            return (long) (getFence() - index);
        }

        public int characteristics() {
            return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
        }
    }
}

遍历方式

package Tree;

import java.util.*;

public class VectorRandomAccessTest {

    public static void main(String[] args) {
        Vector vec= new Vector();
        for (int i=0; i<100000; i++)
            vec.add(i);
        iteratorThroughRandomAccess(vec) ;//随机访问形式  get
        iteratorThroughIterator(vec) ;//迭代器
        iteratorThroughFor2(vec) ;//for循环
        iteratorThroughEnumeration(vec) ;//Enumeration

    }

    public static void iteratorThroughRandomAccess(List list) {

        long startTime;
        long endTime;
        startTime = System.currentTimeMillis();
        for (int i=0; i<list.size(); i++) {
            list.get(i);
        }
        endTime = System.currentTimeMillis();
        long interval = endTime - startTime;
        System.out.println("iteratorThroughRandomAccess:" + interval+" ms");
    }

    public static void iteratorThroughIterator(List list) {

        long startTime;
        long endTime;
        startTime = System.currentTimeMillis();
        for(Iterator iter = list.iterator(); iter.hasNext(); ) {
            iter.next();
        }
        endTime = System.currentTimeMillis();
        long interval = endTime - startTime;
        System.out.println("iteratorThroughIterator:" + interval+" ms");
    }


    public static void iteratorThroughFor2(List list) {

        long startTime;
        long endTime;
        startTime = System.currentTimeMillis();
        for(Object obj:list)
            ;
        endTime = System.currentTimeMillis();
        long interval = endTime - startTime;
        System.out.println("iteratorThroughFor2:" + interval+" ms");
    }

    public static void iteratorThroughEnumeration(Vector vec) {

        long startTime;
        long endTime;
        startTime = System.currentTimeMillis();
        for(Enumeration enu = vec.elements(); enu.hasMoreElements(); ) {
            enu.nextElement();
        }
        endTime = System.currentTimeMillis();
        long interval = endTime - startTime;
        System.out.println("iteratorThroughEnumeration:" + interval+" ms");
    }
}

使用示例

package Test;

import java.util.Vector;
import java.util.Enumeration;

public class VectorTest {
    public static void main(String[] args) {
        // 新建Vector
        Vector vec = new Vector();

        // 添加元素
        vec.add("1");
        vec.add("2");
        vec.add("3");
        vec.add("4");
        vec.add("5");

        // 设置第一个元素为100
        vec.set(0, "100");
        // 将“500”插入到第3个位置
        vec.add(2, "300");
        System.out.println("vec:"+vec);

        // (顺序查找)获取100的索引
        System.out.println("vec.indexOf(100):"+vec.indexOf("100"));
        // (倒序查找)获取100的索引
        System.out.println("vec.lastIndexOf(100):"+vec.lastIndexOf("100"));
        // 获取第一个元素
        System.out.println("vec.firstElement():"+vec.firstElement());
        // 获取第3个元素
        System.out.println("vec.elementAt(2):"+vec.elementAt(2));
        // 获取最后一个元素
        System.out.println("vec.lastElement():"+vec.lastElement());

        // 获取Vector的大小
        System.out.println("size:"+vec.size());
        // 获取Vector的总的容量
        System.out.println("capacity:"+vec.capacity());

        // 获取vector的“第2”到“第4”个元素
        System.out.println("vec 2 to 4:"+vec.subList(1, 4));

        // 通过Enumeration遍历Vector
        Enumeration enu = vec.elements();
        while(enu.hasMoreElements())
            System.out.println("nextElement():"+enu.nextElement());

        Vector retainVec = new Vector();
        retainVec.add("100");
        retainVec.add("300");
        // 获取“vec”中包含在“retainVec中的元素”的集合
        System.out.println("vec.retain():"+vec.retainAll(retainVec));
        System.out.println("vec:"+vec);

        // 获取vec对应的String数组
        String[] arr = (String[]) vec.toArray(new String[0]);
        for (String str:arr)
            System.out.println("str:"+str);

        // 清空Vector clear()和removeAllElements()一样!
         vec.clear();
        //vec.removeAllElements();

        // 判断Vector是否为空
        System.out.println("vec.isEmpty():"+vec.isEmpty());
    }
}

迭代器异常

package Test;

import java.util.Iterator;
import java.util.Vector;

public class FailFastTest {
    private static Vector<Integer> vector = new Vector<>();
    private static class threadOne extends Thread{
        public void run() {
            Iterator<Integer> iterator = vector.iterator();
            while(iterator.hasNext()){
                int i = iterator.next();
//                if (i==3){
//                    iterator.remove();//自身迭代器去修改的时候就是可以的  不会报错
//                }else{
//                    System.out.println("ThreadOne 遍历:" + i);
//                }
                System.out.println("ThreadOne 遍历:" + i);
            }
        }
    }

    private static class threadTwo extends Thread{
        public void run(){
            int i = 0 ;
            while(i < 6){
                System.out.println("ThreadTwo run:" + i);
                if(i == 3){
                    vector.remove(i);
                }
                i++;
            }
        }
    }

    public static void main(String[] args) {
        for(int i = 0 ; i < 10;i++){
            vector.add(i);
        }
        new threadOne().start();
        new threadTwo().start();
    }
}

迭代器正常

package Test;

import java.util.Iterator;
import java.util.Vector;

public class FailFastTest {
    private static Vector<Integer> vector = new Vector<>();
    private static class threadOne extends Thread{
        public void run() {
            Iterator<Integer> iterator = vector.iterator();
            while(iterator.hasNext()){
                int i = iterator.next();
                if (i==3){
                    iterator.remove();//自身迭代器去修改的时候就是可以的  不会报错
                }else{
                    System.out.println("ThreadOne 遍历:" + i);
                }

            }
        }
    }



    public static void main(String[] args) {
        for(int i = 0 ; i < 10;i++){
            vector.add(i);
        }
        new threadOne().start();

    }
}


Enumeration正常  即便有其他的线程对其进行修改 还是不会报错 还是能够正常运行 输出最终的结果

package Test;

import java.util.Enumeration;
import java.util.Vector;

public class FailFastTest {
    private static Vector<Integer> vector = new Vector<>();

    private static class threadOne extends Thread {
        public void run() {
            Enumeration enumeration = vector.elements();
            while (enumeration.hasMoreElements()) {
                try {
                    Thread.sleep(100);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                System.out.println("Threadone run" + enumeration.nextElement());
            }
        }
    }

    private static class threadTwo extends Thread {
        public void run() {
            int i = 0;
            while (i < 6) {
                System.out.println("ThreadTwo run:" + i);
                if (i == 3) {
                    vector.remove(i);
                }
                i++;
            }
        }

    }

    public static void main(String[] args) {
        for (int i = 0; i < 10; i++) {
            vector.add(i);
        }
        new threadOne().start();
        new threadTwo().start();
    }
}

"C:\Program Files\Java\jdk1.8.0_111\bin\java" -Didea.launcher.port=7535 "-Didea.launcher.bin.path=F:\win7\IntelliJ IDEA 2016.3.1\bin" -Dfile.encoding=UTF-8 -classpath "C:\Program Files\Java\jdk1.8.0_111\jre\lib\charsets.jar;C:\Program Files\Java\jdk1.8.0_111\jre\lib\deploy.jar;C:\Program Files\Java\jdk1.8.0_111\jre\lib\ext\access-bridge-64.jar;C:\Program Files\Java\jdk1.8.0_111\jre\lib\ext\cldrdata.jar;C:\Program Files\Java\jdk1.8.0_111\jre\lib\ext\dnsns.jar;C:\Program Files\Java\jdk1.8.0_111\jre\lib\ext\jaccess.jar;C:\Program Files\Java\jdk1.8.0_111\jre\lib\ext\jfxrt.jar;C:\Program Files\Java\jdk1.8.0_111\jre\lib\ext\localedata.jar;C:\Program Files\Java\jdk1.8.0_111\jre\lib\ext\nashorn.jar;C:\Program Files\Java\jdk1.8.0_111\jre\lib\ext\sunec.jar;C:\Program Files\Java\jdk1.8.0_111\jre\lib\ext\sunjce_provider.jar;C:\Program Files\Java\jdk1.8.0_111\jre\lib\ext\sunmscapi.jar;C:\Program Files\Java\jdk1.8.0_111\jre\lib\ext\sunpkcs11.jar;C:\Program Files\Java\jdk1.8.0_111\jre\lib\ext\zipfs.jar;C:\Program Files\Java\jdk1.8.0_111\jre\lib\javaws.jar;C:\Program Files\Java\jdk1.8.0_111\jre\lib\jce.jar;C:\Program Files\Java\jdk1.8.0_111\jre\lib\jfr.jar;C:\Program Files\Java\jdk1.8.0_111\jre\lib\jfxswt.jar;C:\Program Files\Java\jdk1.8.0_111\jre\lib\jsse.jar;C:\Program Files\Java\jdk1.8.0_111\jre\lib\management-agent.jar;C:\Program Files\Java\jdk1.8.0_111\jre\lib\plugin.jar;C:\Program Files\Java\jdk1.8.0_111\jre\lib\resources.jar;C:\Program Files\Java\jdk1.8.0_111\jre\lib\rt.jar;E:\untitled\out\production\untitled;F:\win7\IntelliJ IDEA 2016.3.1\lib\idea_rt.jar" com.intellij.rt.execution.application.AppMain Test.FailFastTest
ThreadTwo run:0
ThreadTwo run:1
ThreadTwo run:2
ThreadTwo run:3
ThreadTwo run:4
ThreadTwo run:5
Threadone run0
Threadone run1
Threadone run2
Threadone run4
Threadone run5
Threadone run6
Threadone run7
Threadone run8
Threadone run9

Process finished with exit code 0




Logo

CSDN联合极客时间,共同打造面向开发者的精品内容学习社区,助力成长!

更多推荐