利用ANN,BP实现简单的深度学习的代码:

#! /usr/bin/env python
# -*- coding=utf-8 -*-
import math
import random
import string

random.seed(0)


# 生成区间[a, b)内的随机数
def rand(a, b):
    return (b - a) * random.random() + a


# 生成大小 I*J 的矩阵,默认零矩阵 (当然,亦可用 NumPy 提速)
def makeMatrix(I, J, fill=0.0):
    m = []
    for i in range(I):
        m.append([fill] * J)
    return m


# 函数 sigmoid,这里采用 tanh,因为看起来要比标准的 1/(1+e^-x) 漂亮些
def sigmoid(x):
    return math.tanh(x)


# 函数 sigmoid 的派生函数, 为了得到输出 (即:y)
def dsigmoid(y):
    return 1.0 - y ** 2


class NN:
    ''' 三层反向传播神经网络 '''

    def __init__(self, ni, nh, no):
        # 输入层、隐藏层、输出层的节点(数)
        self.ni = ni + 1  # 增加一个偏差节点 #3
        self.nh = nh      #4
        self.no = no      #1

        # 激活神经网络的所有节点(向量)
        self.ai = [1.0] * self.ni   #self.ni = 3,输入层有3个节点,初始化为[1.0, 1.0, 1.0]
        self.ah = [1.0] * self.nh   #self.nh = 4,隐藏层有4个节点,初始化位[1.0, 1.0, 1.0, 1.0]
        self.ao = [1.0] * self.no   #self.nh = 1,输出层有1个节点,初始化位[1.0]

        # 建立权重(矩阵)
        self.wi = makeMatrix(self.ni, self.nh)#输入层到隐藏层,3个到4个,权值:[[0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0]]
        self.wo = makeMatrix(self.nh, self.no)#隐藏层到输出层,4个到1个,权值:[[0.0], [0.0], [0.0], [0.0]]

        # 设为随机值
        for i in range(self.ni):
            for j in range(self.nh):
                self.wi[i][j] = rand(-0.2, 0.2)
        for j in range(self.nh):
            for k in range(self.no):
                self.wo[j][k] = rand(-2.0, 2.0)
        print "随机权值"
        print self.wi   # 随机后的权值:[[0.13776874061001926, 0.10318176117612099, -0.031771367667662004, -0.09643329988281467], [0.004509888547443414, -0.03802634501983429, 0.11351943561390904, -0.07867490956842903], [-0.009361218339057675, 0.03335281578201249, 0.16324515407813406, 0.0018747423269561136]]
        print self.wo   #随机后的权值:[[-0.8726486224011847], [1.0232168166288957], [0.4734759867013265], [-0.9979746345502378]]
        # 最后建立动量因子(矩阵)
        self.ci = makeMatrix(self.ni, self.nh) #输入层到隐藏层,3个到4个,权值:[[0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0]]
        self.co = makeMatrix(self.nh, self.no) #隐藏层到输出层,4个到1个,权值:[[0.0], [0.0], [0.0], [0.0]]
#更新的函数
    def update(self, inputs):
        print "-----------update---------------"
        if len(inputs) != self.ni - 1:
            raise ValueError('与输入层节点数不符!')

        # 激活输入层
        print "----------self.ai--------"
        for i in range(self.ni - 1):
            # self.ai[i] = sigmoid(inputs[i])
            self.ai[i] = inputs[i]
            print "jihuo_input"
            print self.ai[i]
        print "---------self.nh---------"
        # 激活隐藏层
        for j in range(self.nh):#self.nh = 4
            sum = 0.0
            for i in range(self.ni):#self.ni = 3
                sum = sum + self.ai[i] * self.wi[i][j]
            self.ah[j] = sigmoid(sum)
            print self.ah[j]

        # 激活输出层
        print "---------self.ao---------"
        for k in range(self.no): # self.no = 1
            sum = 0.0
            for j in range(self.nh): #self.nh = 4
                sum = sum + self.ah[j] * self.wo[j][k]
            self.ao[k] = sigmoid(sum)
        print "---------"
        print self.ao[:]
        print "---------"
        return self.ao[:]
#反向传播
    def backPropagate(self, targets, N, M):
        ''' 反向传播 '''
        print targets
        if len(targets) != self.no:
            raise ValueError('与输出层节点数不符!')

        # 计算输出层的误差
        output_deltas = [0.0] * self.no  # 首先初始化误差值
        for k in range(self.no):  # self.no = 1
            error = targets[k] - self.ao[k]
            output_deltas[k] = dsigmoid(self.ao[k]) * error

        # 计算隐藏层的误差   #首先初始化误差值
        hidden_deltas = [0.0] * self.nh
        for j in range(self.nh):   #self.nh = 4
            error = 0.0
            for k in range(self.no): #self.no =1
                error = error + output_deltas[k] * self.wo[j][k]
            hidden_deltas[j] = dsigmoid(self.ah[j]) * error

        # 更新输出层权重
        for j in range(self.nh):
            for k in range(self.no):
                change = output_deltas[k] * self.ah[j]
                self.wo[j][k] = self.wo[j][k] + N * change + M * self.co[j][k]
                self.co[j][k] = change
                # print(N*change, M*self.co[j][k])

        # 更新输入层权重
        for i in range(self.ni):
            for j in range(self.nh):
                change = hidden_deltas[j] * self.ai[i]
                self.wi[i][j] = self.wi[i][j] + N * change + M * self.ci[i][j]
                self.ci[i][j] = change

        # 计算误差
        error = 0.0
        for k in range(len(targets)):
            error = error + 0.5 * (targets[k] - self.ao[k]) ** 2
        return error

    def test(self, patterns):
        for p in patterns:
            print(p[0], '->', self.update(p[0]))

    def weights(self):
        print('输入层权重:')
        for i in range(self.ni):
            print(self.wi[i])
        print()
        print('输出层权重:')
        for j in range(self.nh):
            print(self.wo[j])

    def train(self, patterns, iterations=1000, N=0.5, M=0.1):
        # N: 学习速率(learning rate)
        # M: 动量因子(momentum factor)
        for i in range(iterations): #循环1000次,每100 次输出一个结果
            print "---------------"
            error = 0.0
            for p in patterns:# 每次输入的有四个点
                # print p
                inputs = p[0]
                # print "imputs"
                # print inputs
                # print "-------"
                targets = p[1]
                self.update(inputs)  #更新输入的数据
                error = error + self.backPropagate(targets, N, M)  #反向传播结果,把结果回带到
            print "******************************************"
            if i % 100 == 0:
                print('误差 %-.5f' % error)


def demo():
    # 一个演示:教神经网络学习逻辑异或(XOR)------------可以换成你自己的数据试试
    pat = [
        [[0, 0], [0]],
        [[0, 1], [1]],
        [[1, 0], [1]],
        [[1, 1], [0]]
    ]

    # 创建一个神经网络:输入层有两个节点、隐藏层有两个节点、输出层有一个节点
    n = NN(2, 4, 1)
    # 用一些模式训练它
    n.train(pat)
    # 测试训练的成果(不要吃惊哦)
    n.test(pat)
    # 看看训练好的权重(当然可以考虑把训练好的权重持久化)
    n.weights()


if __name__ == '__main__':
    demo()


Logo

CSDN联合极客时间,共同打造面向开发者的精品内容学习社区,助力成长!

更多推荐