一、n次拉格朗日插值

根据《插值多项式的性质》中的定理6.1可得

其中(6.19)称为基函数,(6.18)称为拉格朗日多项式,用(6.18)计算插值称为拉格朗日多项式插值。


方法2:通过MATLAB程序计算

>> X = [-2, 0, 1, 2]; Y = [17, 1, 2, 17];
>> p1 = poly(X(1)); p2 = poly(X(2)); p3 = poly(X(3)); p4 = poly(X(4));
>> l01 = conv(conv(p2, p3), p4)/((X(1) - X(2)) * (X(1) - X(3)) * (X(1) - X(4)));
>> l11 = conv(conv(p1, p3), p4)/((X(2) - X(1)) * (X(2) - X(3)) * (X(2) - X(4)));
>> l21 = conv(conv(p1, p2), p4)/((X(3) - X(1)) * (X(3) - X(2)) * (X(3) - X(4)));
>> l31 = conv(conv(p1, p2), p3)/((X(4) - X(1)) * (X(4) - X(2)) * (X(4) - X(3)));
>> l0 = poly2sym(l01), l1 = poly2sym(l11), l2 = poly2sym(l21), l3 = poly2sym(l31)
 
l0 =
 
- x^3/24 + x^2/8 - x/12
 
 
l1 =
 
x^3/4 - x^2/4 - x + 1
 
 
l2 =
 
- x^3/3 + (4*x)/3
 
 
l3 =
 
x^3/8 + x^2/8 - x/4
 
>> P = l01 * Y(1) + l11 * Y(2) + l21 * Y(3) + l31 * Y(4)

P =

     1     4    -4     1

>> L = poly2sym(P), x = 0.6; Y = polyval(P, x)
 
L =
 
x^3 + 4*x^2 - 4*x + 1
 

Y =

    0.2560

>> syms M; x = 0.6;
>> R3 = M * abs((x - X(1)) * (x - X(2)) * (x - X(3)) * (x - X(4))) / 24 
 
R3 =
 
(91*M)/2500              
 
>> 
即误差满足


二、拉格朗日多项式和基函数的MATLAB程序


编辑M文件:

%lagran1.m
%求拉格朗日插值多项式和基函数
%输入的量:n+1个节点(x_i,y_i)(i = 1,2, ... , n+1)横坐标向量X,纵坐标向量Y
%输出的量:n次拉格朗日插值多项式L及其系数向量C,基函数l及其系数矩阵L
function [C,L,L1,l] = lagran1(X,Y)
m = length(X); L = ones(m,m);
for k = 1 : m
    V = 1;
    for i = 1 : m
        if k ~= i
            V = conv(V,poly(X(i))) / (X(k) - X(i));
        end
    end
    L1(k, :) = V; l(k, :) = poly2sym(V);
end
C = Y * L1;
L = Y * l;


>> X = [-2.15 -1.00 0.01 1.02 2.03 3.25];
>> Y = [17.03 7.24 1.05 2.03 17.06 23.05];
>> [C,L,L1,l] = lagran1(X,Y);
>> C

C =

   -0.2169    0.0648    2.1076    3.3960   -4.5745    1.0954

>> vpa(L,5)
 
ans =
 
- 0.21686*x^5 + 0.06482*x^4 + 2.1076*x^3 + 3.396*x^2 - 4.5745*x + 1.0954
 
>> L1

L1 =

   -0.0056    0.0299   -0.0323   -0.0292    0.0382   -0.0004
    0.0331   -0.1377   -0.0503    0.6305   -0.4852    0.0048
   -0.0693    0.2184    0.3961   -1.2116   -0.3166    1.0033
    0.0687   -0.1469   -0.5398    0.6528    0.9673   -0.0097
   -0.0317    0.0358    0.2530   -0.0426   -0.2257    0.0023
    0.0049    0.0004   -0.0266    0.0001    0.0220   -0.0002

>> vpa(l,5)
 
ans =
 
    - 0.0056263*x^5 + 0.029875*x^4 - 0.032273*x^3 - 0.029239*x^2 + 0.038157*x - 0.00037862
           0.033098*x^5 - 0.13769*x^4 - 0.050322*x^3 + 0.63051*x^2 - 0.48517*x + 0.0047887
              - 0.069344*x^5 + 0.21843*x^4 + 0.39608*x^3 - 1.2116*x^2 - 0.31662*x + 1.0033
              0.06865*x^5 - 0.14691*x^4 - 0.53981*x^3 + 0.65279*x^2 + 0.9673*x - 0.0097378
        - 0.031721*x^5 + 0.035845*x^4 + 0.25295*x^3 - 0.042557*x^2 - 0.22568*x + 0.0022608
 0.0049432*x^5 + 0.00044489*x^4 - 0.026633*x^3 + 0.000092729*x^2 + 0.022008*x - 0.00022006

三、拉格朗日插值及其误差估计的MATLAB程序


编写M文件

%lagrane.m
%拉格朗日插值及其误差估计
%输入的量:X是n+1个节点(x_i,y_i)(i = 1,2, ... , n+1)横坐标向量,Y是纵坐标向量,
%x是以向量形式输入的m个插值点,M在[a,b]上满足|f~(n+1)(x)|≤M
%注:f~(n+1)(x)表示f(x)的n+1阶导数
%输出的量:y为m个插值构成的向量,R是误差限
function [y, R] = lagrange(X, Y, x, M)
n = length(X);m = length(x);
for i = 1:m
    z = x(i);
    s = 0.0;
    for k = 1:n
        p = 1.0; q1 = 1.0; c1 = 1.0;
        for j = 1:n
            if j~=k
                p = p * (z - X(j)) / (X(k) - X(j));
            end
            q1 = abs(q1 * (z - X(j)));
            c1 = c1 * j;
        end
        s = p * Y(k) + s;
    end
    y(i) = s;
    R(i) = M * q1 / c1;
end



例:用Lagrange插值来求sinx在某点的值,并估计其误差,已知sin0°  = 0, sin30°  = 0.5, sin45° = 0.7071, sin60° = 0.8660, sin90° = 1.

X                       0                         pi/6                         pi/4                        pi/3                     pi/2

Y                       0                         0.5                        0.7071                  0.8660                   1 


解:

>> X = [0 pi/6 pi/4 pi/3 pi/2];
>> Y = [0 0.5 0.7071 0.8660 1];
>> x = linspace(0,pi,50);
>> M = 1;
>> [y, R] = lagrange(X, Y, x, M);
>> y1 = sin(x);
>> errorbar(x,y,R,'.g')
>> hold on
>> plot(X, Y, 'or', x, y, '.k', x, y1, '-b');
>> legend('误差','样本点','拉格朗日插值估算','sin(x)');





Logo

助力广东及东莞地区开发者,代码托管、在线学习与竞赛、技术交流与分享、资源共享、职业发展,成为松山湖开发者首选的工作与学习平台

更多推荐