一.反三角函数

1.1反正弦函数

正弦函数 y = sin ⁡ x y=\sin x y=sinx \quad ( x ∈ [ − π 2 , π 2 ] x\in[-\frac{π}{2},\frac{π}{2}] x[2π,2π])的反函数叫反正弦函数
记作 y = arcsin ⁡ x y=\arcsin x y=arcsinx, ( x ∈ [ − 1 , 1 ] x\in[-1,1] x[1,1], y ∈ [ − π 2 , π 2 ] y\in[-\frac{π}{2},\frac{π}{2}] y[2π,2π])
y = sin ⁡ y=\sin y=sin-1 x x x

注意区分: ( sin ⁡ x ) (\sin x) (sinx)-1= 1 sin ⁡ x \frac{1}{\sin x} sinx1 \quad sin ⁡ \sin sin-1 x x x = arcsin ⁡ x \arcsin x arcsinx

16

x ∈ [ − 1 , 1 ] x\in[-1,1] x[1,1] 时, \quad arcsin ⁡ ( − x ) = − arcsin ⁡ x \arcsin(-x)=-\arcsin x arcsin(x)=arcsinx
x ∈ [ − π 2 , π 2 ] x\in[-\frac{π}{2},\frac{π}{2}] x[2π,2π]时, \quad arcsin ⁡ ( sin ⁡ x ) = x \arcsin(\sin x)=x arcsin(sinx)=x
x ∈ [ − 1 , 1 ] x\in[-1,1] x[1,1]时, \quad \quad sin ⁡ ( arcsin ⁡ x ) = x \sin(\arcsin x)=x sin(arcsinx)=x

\quad
\quad

1.2反余弦函数

正弦函数 y = cos ⁡ x y=\cos x y=cosx \quad ( x ∈ [ 0 , π ] x\in[0,π] x[0,π])的反函数叫反余弦函数
记作 y = arccos ⁡ x y=\arccos x y=arccosx, ( x ∈ [ − 1 , 1 ] x\in[-1,1] x[1,1], y ∈ [ 0 , π ] y\in[0,π] y[0,π])
y = cos ⁡ y=\cos y=cos-1 x x x

17
反余弦函数是严格单调递减, 有界的非奇非偶函数, 它的图像关于点(0, π 2 \frac{π}{2} 2π)中心对称, 所以 y 1 y_1 y1+ y 2 y_2 y2= π

x ∈ [ − 1 , 1 ] x\in[-1,1] x[1,1]时, \quad cos ⁡ \cos cos-1(-x) = π − cos ⁡ =π-\cos =πcos-1x
x ∈ [ 0 , π ] x\in[0,π] x[0,π] 时, \quad cos ⁡ \cos cos-1 ( cos ⁡ x ) = x (\cos x)=x (cosx)=x
x ∈ [ − 1 , 1 ] x\in[-1,1] x[1,1]时, \quad cos ⁡ \cos cos( cos ⁡ \cos cos-1 x x x) = x =x =x
x ∈ [ − 1 , 1 ] x\in[-1,1] x[1,1]时, \quad sin ⁡ \sin sin( cos ⁡ \cos cos-1 x x x) = 1 − x 2 \sqrt{1-x^2} 1x2

最后一个公式的证明过程
令 y= cos ⁡ \cos cos-1 x x x \quad x ∈ [ 0 , π ] x\in[0,π] x[0,π]
sin ⁡ \sin sin( cos ⁡ \cos cos-1 x x x) = sin ⁡ y \sin y siny = 1 − cos ⁡ 2 y \sqrt{1-\cos^2y} 1cos2y = 1 − x 2 \sqrt{1-x^2} 1x2

\quad
\quad

1.3反正切函数

正切函数 y = tan ⁡ x y=\tan x y=tanx \quad ( x ∈ [ − π 2 , π 2 ] x\in[-\frac{π}{2},\frac{π}{2}] x[2π,2π])的反函数叫反正切函数
记作 y = arctan ⁡ x y=\arctan x y=arctanx, ( x ∈ R x\in R xR, y ∈ [ − π 2 , π 2 ] y\in[-\frac{π}{2},\frac{π}{2}] y[2π,2π])
y = tan ⁡ y=\tan y=tan-1 x x x

18

x ∈ ( − ∞ , ∞ ) x\in(-\infty,\infty) x(,)时, \quad arctan ⁡ ( − x ) = − arctan ⁡ x \arctan(-x)=-\arctan x arctan(x)=arctanx
x ∈ ( − π 2 , π 2 ) x\in(-\frac{π}{2},\frac{π}{2}) x(2π,2π)时, \quad arctan ⁡ ( tan ⁡ x ) = x \arctan(\tan x)=x arctan(tanx)=x
x ∈ ( − ∞ , ∞ ) x\in(-\infty,\infty) x(,)时, \quad tan ⁡ ( arctan ⁡ x ) = x \tan(\arctan x)=x tan(arctanx)=x

\quad
\quad

1.4反余切函数

余切函数 y = cot ⁡ x y=\cot x y=cotx \quad ( x ∈ [ 0 , π ] x\in[0,π] x[0,π])的反函数叫反余切函数
记作 y = cot ⁡ y=\cot y=cot-1x, ( x ∈ R x\in R xR, y ∈ [ 0 , π ] y\in[0,π] y[0,π])
19

x ∈ ( − ∞ , ∞ ) x\in(-\infty,\infty) x(,)时, \quad cot ⁡ \cot cot-1(-x) = π- cot ⁡ \cot cot-1x
x ∈ ( 0 , π ) x\in(0,π) x(0,π)时, \quad \quad \quad cot ⁡ \cot cot-1( cot ⁡ x \cot x cotx) = x x x
x ∈ ( − ∞ , ∞ ) x\in(-\infty,\infty) x(,)时, \quad cot ⁡ \cot cot( cot ⁡ \cot cot-1 x x x) = x x x
x ∈ ( − ∞ , 0 ) x\in(-\infty,0) x(,0) ∪ \cup (0, ∞ \infty )时, \quad tan ⁡ ( cot ⁡ \tan(\cot tan(cot-1 x x x) = 1 x \frac{1}{x} x1, \quad cot ⁡ ( tan ⁡ \cot(\tan cot(tan-1 x x x) = 1 x \frac{1}{x} x1
x ∈ ( − ∞ , ∞ ) x\in(-\infty,\infty) x(,)时, \quad tan ⁡ \tan tan-1 x x x + cot ⁡ \cot cot-1 x x x = π 2 \frac{π}{2} 2π

补充
tan ⁡ \tan tan-1 x x x + cot ⁡ \cot cot-1 x x x = π 2 \frac{π}{2} 2π
sin ⁡ \sin sin-1 x x x + cos ⁡ \cos cos-1 x x x = π 2 \frac{π}{2} 2π

\quad
\quad

二.反函数

原函数 \quad 对应 \quad 反函数
y=f(x) \quad \quad \quad \quad \quad y=f-1(x)
x \quad \quad \quad \quad \quad \quad \quad y
y \quad \quad \quad \quad \quad \quad \quad x
定义域 \quad \quad \quad \quad \quad 值域
值域 \quad \quad \quad \quad \quad 定义域

图像关于y=x轴对称,原函数与反函数单调性同增同减

求解反函数的方法
(1)把y当作常数, 将函数看作是一个方程, 求出变量x
(2)把x和y对调

\quad
\quad
例题1:

(1) arcsin ⁡ ( − 1 ) \arcsin(-1) arcsin(1)
∵ \because -1 ∈ \in [-1,1]
sin ⁡ ( − π 2 ) \sin(-\frac{π}{2}) sin(2π)=-1
∴ \therefore arcsin ⁡ ( − 1 ) \arcsin(-1) arcsin(1) = − π 2 -\frac{π}{2} 2π

(2) arcsin ⁡ ( − 3 2 ) \arcsin(-\frac{\sqrt{3}}{2}) arcsin(23 )
∵ \because − 3 2 -\frac{\sqrt{3}}{2} 23 ∈ \in [-1,1]
sin ⁡ ( − π 3 ) \sin(-\frac{π}{3}) sin(3π)= − 3 2 -\frac{\sqrt{3}}{2} 23
∴ \therefore arcsin ⁡ ( − 3 2 ) \arcsin(-\frac{\sqrt{3}}{2}) arcsin(23 ) = − π 3 -\frac{π}{3} 3π

(3) arccos ⁡ ( 2 2 ) \arccos(\frac{\sqrt{2}}{2}) arccos(22 )
∵ \because 2 2 \frac{\sqrt{2}}{2} 22 ∈ \in [-1,1]
cos ⁡ ( π 4 ) = 2 2 \cos(\frac{π}{4})=\frac{\sqrt{2}}{2} cos(4π)=22
∴ \therefore arccos ⁡ ( 2 2 ) \arccos(\frac{\sqrt{2}}{2}) arccos(22 ) = π 4 \frac{π}{4} 4π

(4) arccos ⁡ 0 \arccos0 arccos0
∵ \because 0 ∈ \in [-1,1]
cos ⁡ ( π 2 ) = 0 \cos(\frac{π}{2})=0 cos(2π)=0
∴ \therefore arccos ⁡ ( 0 ) \arccos(0) arccos(0) = π 2 \frac{π}{2} 2π

(5) arctan ⁡ 3 3 \arctan\frac{\sqrt{3}}{3} arctan33
∵ \because 3 3 \frac{\sqrt{3}}{3} 33 ∈ \in ( − ∞ , ∞ ) (-\infty,\infty) (,)
tan ⁡ π 6 \tan\frac{π}{6} tan6π = 3 3 \frac{\sqrt{3}}{3} 33
∴ \therefore arctan ⁡ 3 3 \arctan\frac{\sqrt{3}}{3} arctan33 = π 6 \frac{π}{6} 6π

\quad
\quad
例题2:
(1) sin ⁡ [ arcsin ⁡ ( − 1 2 ) ] \sin[\arcsin(-\frac{1}{2})] sin[arcsin(21)]
− 1 2 -\frac{1}{2} 21

(2) arccos ⁡ ( cos ⁡ 11 π 6 ) \arccos(\cos\frac{11π}{6}) arccos(cos611π)
cos ⁡ 11 π 6 \cos\frac{11π}{6} cos611π = cos ⁡ ( − π 6 ) \cos(-\frac{π}{6}) cos(6π) = cos ⁡ ( π 6 ) \cos(\frac{π}{6}) cos(6π) = 3 2 \frac{\sqrt{3}}{2} 23
∴ \therefore arccos ⁡ ( 3 2 ) \arccos(\frac{\sqrt{3}}{2}) arccos(23 ) = π 6 \frac{π}{6} 6π

\quad
\quad
例题3: 求下列函数的反函数
方法: 先求出自变量为y的方程, 再把x和y互换

(1) y = x − 1 x + 1 y=\frac{x-1}{x+1} y=x+1x1
=> y ( x + 1 ) = x − 1 y(x+1)=x-1 y(x+1)=x1
=> y x + y = x − 1 yx+y=x-1 yx+y=x1
=> y x − x = − y − 1 yx-x=-y-1 yxx=y1
=> x ( y − 1 ) = − y − 1 x(y-1)=-y-1 x(y1)=y1
=> x = − y − 1 y − 1 x=\frac{-y-1}{y-1} x=y1y1 整理(上下同乘-1)
=> x = 1 + y 1 − y x=\frac{1+y}{1-y} x=1y1+y
=> y = 1 + x 1 − x y=\frac{1+x}{1-x} y=1x1+x

(2) y = e y=e y=e2x
=> ln ⁡ y = 2 x \ln y=2x lny=2x
=> x = ln ⁡ y 2 x=\frac{\ln y}{2} x=2lny
=> y = ln ⁡ x 2 y=\frac{\ln x}{2} y=2lnx

(3) y = ln ⁡ ( x + x 2 + 1 ) y=\ln(x+\sqrt{x^2+1}) y=ln(x+x2+1 )
=> e y = x + x 2 + 1 e^y=x+\sqrt{x^2+1} ey=x+x2+1
=> e y − x = x 2 + 1 e^y-x=\sqrt{x^2+1} eyx=x2+1
=> e2y+ x 2 − 2 x e y = x 2 + 1 x^2-2xe^y=x^2+1 x22xey=x2+1
=> e2y − 2 x e y = 1 -2xe^y=1 2xey=1
=> e y ( e y − 2 x ) = 1 e^y(e^y-2x)=1 ey(ey2x)=1
=> e y − 2 x = 1 e y e^y-2x=\frac{1}{e^y} ey2x=ey1
=> x = e y − 1 e y 2 x=\frac{e^y-\frac{1}{e^y}}{2} x=2eyey1

(4) y = sin ⁡ 3 x y=\sin3x y=sin3x
=> 3 x = arcsin ⁡ y 3x=\arcsin y 3x=arcsiny
=> x = 1 3 arcsin ⁡ y x=\frac{1}{3}\arcsin y x=31arcsiny
=> y = 1 3 arcsin ⁡ x y=\frac{1}{3}\arcsin x y=31arcsinx

(5) y = arcsin ⁡ 3 x y=\arcsin3x y=arcsin3x
=> 3 x = sin ⁡ y 3x=\sin y 3x=siny
=> x = sin ⁡ y 3 x=\frac{\sin y}{3} x=3siny
=> y = 1 3 sin ⁡ x y=\frac{1}{3}\sin x y=31sinx

Logo

旨在为数千万中国开发者提供一个无缝且高效的云端环境,以支持学习、使用和贡献开源项目。

更多推荐