对于电机的转速测量,可以将增量式编码器安装在电机上,用编码器的轴连接电机的轴,然后用控制器对编码器进行计数,最后通过特定的方法计算出电机的转速。

常用的编码器测速方法有三种:M法、T法和MT法。

  • M法:又叫做频率测量法。这种方法是在一个固定的计时周期内,统计这段时间的编码器脉冲数,从而计算速度值。设编码器单圈总脉冲数为C,在时间T0内,统计到的编码器脉冲数为M0,则转速n的计算公式为:n = M0/(C*T0)。

M法是通过测量固定时间内的脉冲数来求出速度的。

假设编码器转过一圈需要100个脉冲(C=100),在100毫秒内测得产生了20个脉冲,则说明在1秒内将产生200个脉冲,对应的圈数就是200/100=2圈,也就是说转速为2圈/秒。通过公式计算n = 20/(100*0.1)=2。与前边分析的结果一致。

也可以这样理解,转过了M0/C=20/100=0.2圈,用时0.1秒,那么1秒将转0.2*10=2圈。

M法在高速测量时可以获得较好的测量精度和平稳性。但是如果转速很低,低到每个T0内只有少数几个脉冲,则此时计算出的速度误差就比较大,且很不稳定(因为开始测量和结束测量的时刻最多会引入2个脉冲的误差)。

使用编码器倍频技术,可以改善M法在低速测量时的准确性。

增大计数周期,即增大T0,也可以改善M法在低速测量时的准确性。

以上两种方法本质都是增大一个计数周期内的脉冲数,从而减小2个脉冲误差的占比。

  • T法:又叫做周期测量法。这种方法是建立一个已知频率的高频脉冲并对其计数,计数时间由捕获到的编码器相邻两个脉冲的时间间隔Te决定,计数值为M1。设编码器单圈总脉冲数为C,高频脉冲的频率为F0,则转速n的计算公式为:n = 1/(C*Te) = F0/(C*M1)。Te = M1/F0。

T法是利用一个已知脉冲来测量编码器两个脉冲之间的时间来计算出速度的。

假设编码器转过一圈需要100个脉冲(C=100),则1个脉冲间隔为1/100圈,用时为Te(假设为20毫秒),那么1圈用时就是100*20/1000=2秒,也就是说转速为0.5圈/秒。而这20毫秒(Te)间隔,正好对应M1/F0。

在电机高转速的时候,编码器脉冲间隔时间Te很小,使得测量周期内的高频脉冲计数值M1也变得很少,导致测量误差变大,而在低转速时,Te足够大,测量周期内的M1也足够度多,所以T法和M法刚好相反,更适合测量低速(同样存在开始测量和结束测量时刻的最多2个脉冲的误差)。

  • M/T法:综合了M法和T法各自的优势,既测量编码器脉冲数,又测量一定时间内的高频脉冲数。在一个相对固定的时间内,计算编码器脉冲数M0,并计数一个已知频率F0的高频脉冲,计数值为M1,计算速度值。设编码器单圈总脉冲数为C,则转速n的计算公式为:n = F0*M0 / (C*M1)。

由于编码器单圈总脉冲数C与高频脉冲频率F0为固定值(常数),因此转速n就只受M0和M1的影响。电机高转速时,M0增大,M1减小,相当于M法;电机低转速时,M1增大,M0减小,相当于T法。

Logo

旨在为数千万中国开发者提供一个无缝且高效的云端环境,以支持学习、使用和贡献开源项目。

更多推荐