golang中各种异步等待写法集合


package wait

import (
	"context"
	"errors"
	"math/rand"
	"sync"
	"time"

	"k8s.io/apimachinery/pkg/util/runtime"
)

// For any test of the style:
//   ...
//   <- time.After(timeout):
//      t.Errorf("Timed out")
// The value for timeout should effectively be "forever." Obviously we don't want our tests to truly lock up forever, but 30s
// is long enough that it is effectively forever for the things that can slow down a run on a heavily contended machine
// (GC, seeks, etc), but not so long as to make a developer ctrl-c a test run if they do happen to break that test.
var ForeverTestTimeout = time.Second * 30

// NeverStop may be passed to Until to make it never stop.
var NeverStop <-chan struct{} = make(chan struct{})

// Group allows to start a group of goroutines and wait for their completion.
type Group struct {
	wg sync.WaitGroup
}

func (g *Group) Wait() {
	g.wg.Wait()
}

// StartWithChannel starts f in a new goroutine in the group.
// stopCh is passed to f as an argument. f should stop when stopCh is available.
func (g *Group) StartWithChannel(stopCh <-chan struct{}, f func(stopCh <-chan struct{})) {
	g.Start(func() {
		f(stopCh)
	})
}

// StartWithContext starts f in a new goroutine in the group.
// ctx is passed to f as an argument. f should stop when ctx.Done() is available.
func (g *Group) StartWithContext(ctx context.Context, f func(context.Context)) {
	g.Start(func() {
		f(ctx)
	})
}

// Start starts f in a new goroutine in the group.
func (g *Group) Start(f func()) {
	g.wg.Add(1)
	go func() {
		defer g.wg.Done()
		f()
	}()
}

// Forever calls f every period for ever.
//
// Forever is syntactic sugar on top of Until.
func Forever(f func(), period time.Duration) {
	Until(f, period, NeverStop)
}

// Until loops until stop channel is closed, running f every period.
//
// Until is syntactic sugar on top of JitterUntil with zero jitter factor and
// with sliding = true (which means the timer for period starts after the f
// completes).
func Until(f func(), period time.Duration, stopCh <-chan struct{}) {
	JitterUntil(f, period, 0.0, true, stopCh)
}

// UntilWithContext loops until context is done, running f every period.
//
// UntilWithContext is syntactic sugar on top of JitterUntilWithContext
// with zero jitter factor and with sliding = true (which means the timer
// for period starts after the f completes).
func UntilWithContext(ctx context.Context, f func(context.Context), period time.Duration) {
	JitterUntilWithContext(ctx, f, period, 0.0, true)
}

// NonSlidingUntil loops until stop channel is closed, running f every
// period.
//
// NonSlidingUntil is syntactic sugar on top of JitterUntil with zero jitter
// factor, with sliding = false (meaning the timer for period starts at the same
// time as the function starts).
func NonSlidingUntil(f func(), period time.Duration, stopCh <-chan struct{}) {
	JitterUntil(f, period, 0.0, false, stopCh)
}

// NonSlidingUntilWithContext loops until context is done, running f every
// period.
//
// NonSlidingUntilWithContext is syntactic sugar on top of JitterUntilWithContext
// with zero jitter factor, with sliding = false (meaning the timer for period
// starts at the same time as the function starts).
func NonSlidingUntilWithContext(ctx context.Context, f func(context.Context), period time.Duration) {
	JitterUntilWithContext(ctx, f, period, 0.0, false)
}

// JitterUntil loops until stop channel is closed, running f every period.
//
// If jitterFactor is positive, the period is jittered before every run of f.
// If jitterFactor is not positive, the period is unchanged and not jittered.
//
// If sliding is true, the period is computed after f runs. If it is false then
// period includes the runtime for f.
//
// Close stopCh to stop. f may not be invoked if stop channel is already
// closed. Pass NeverStop to if you don't want it stop.
func JitterUntil(f func(), period time.Duration, jitterFactor float64, sliding bool, stopCh <-chan struct{}) {
	var t *time.Timer
	var sawTimeout bool

	for {
		select {
		case <-stopCh:
			return
		default:
		}

		jitteredPeriod := period
		if jitterFactor > 0.0 {
			jitteredPeriod = Jitter(period, jitterFactor)
		}

		if !sliding {
			t = resetOrReuseTimer(t, jitteredPeriod, sawTimeout)
		}

		func() {
			defer runtime.HandleCrash()
			f()
		}()

		if sliding {
			t = resetOrReuseTimer(t, jitteredPeriod, sawTimeout)
		}

		// NOTE: b/c there is no priority selection in golang
		// it is possible for this to race, meaning we could
		// trigger t.C and stopCh, and t.C select falls through.
		// In order to mitigate we re-check stopCh at the beginning
		// of every loop to prevent extra executions of f().
		select {
		case <-stopCh:
			return
		case <-t.C:
			sawTimeout = true
		}
	}
}

// JitterUntilWithContext loops until context is done, running f every period.
//
// If jitterFactor is positive, the period is jittered before every run of f.
// If jitterFactor is not positive, the period is unchanged and not jittered.
//
// If sliding is true, the period is computed after f runs. If it is false then
// period includes the runtime for f.
//
// Cancel context to stop. f may not be invoked if context is already expired.
func JitterUntilWithContext(ctx context.Context, f func(context.Context), period time.Duration, jitterFactor float64, sliding bool) {
	JitterUntil(func() { f(ctx) }, period, jitterFactor, sliding, ctx.Done())
}

// Jitter returns a time.Duration between duration and duration + maxFactor *
// duration.
//
// This allows clients to avoid converging on periodic behavior. If maxFactor
// is 0.0, a suggested default value will be chosen.
func Jitter(duration time.Duration, maxFactor float64) time.Duration {
	if maxFactor <= 0.0 {
		maxFactor = 1.0
	}
	wait := duration + time.Duration(rand.Float64()*maxFactor*float64(duration))
	return wait
}

// ErrWaitTimeout is returned when the condition exited without success.
var ErrWaitTimeout = errors.New("timed out waiting for the condition")

// ConditionFunc returns true if the condition is satisfied, or an error
// if the loop should be aborted.
type ConditionFunc func() (done bool, err error)

// Backoff holds parameters applied to a Backoff function.
type Backoff struct {
	// The initial duration.
	Duration time.Duration
	// Duration is multiplied by factor each iteration. Must be greater
	// than or equal to zero.
	Factor float64
	// The amount of jitter applied each iteration. Jitter is applied after
	// cap.
	Jitter float64
	// The number of steps before duration stops changing. If zero, initial
	// duration is always used. Used for exponential backoff in combination
	// with Factor.
	Steps int
	// The returned duration will never be greater than cap *before* jitter
	// is applied. The actual maximum cap is `cap * (1.0 + jitter)`.
	Cap time.Duration
}

// Step returns the next interval in the exponential backoff. This method
// will mutate the provided backoff.
func (b *Backoff) Step() time.Duration {
	if b.Steps < 1 {
		if b.Jitter > 0 {
			return Jitter(b.Duration, b.Jitter)
		}
		return b.Duration
	}
	b.Steps--

	duration := b.Duration

	// calculate the next step
	if b.Factor != 0 {
		b.Duration = time.Duration(float64(b.Duration) * b.Factor)
		if b.Cap > 0 && b.Duration > b.Cap {
			b.Duration = b.Cap
			b.Steps = 0
		}
	}

	if b.Jitter > 0 {
		duration = Jitter(duration, b.Jitter)
	}
	return duration
}

// contextForChannel derives a child context from a parent channel.
//
// The derived context's Done channel is closed when the returned cancel function
// is called or when the parent channel is closed, whichever happens first.
//
// Note the caller must *always* call the CancelFunc, otherwise resources may be leaked.
func contextForChannel(parentCh <-chan struct{}) (context.Context, context.CancelFunc) {
	ctx, cancel := context.WithCancel(context.Background())

	go func() {
		select {
		case <-parentCh:
			cancel()
		case <-ctx.Done():
		}
	}()
	return ctx, cancel
}

// ExponentialBackoff repeats a condition check with exponential backoff.
//
// It checks the condition up to Steps times, increasing the wait by multiplying
// the previous duration by Factor.
//
// If Jitter is greater than zero, a random amount of each duration is added
// (between duration and duration*(1+jitter)).
//
// If the condition never returns true, ErrWaitTimeout is returned. All other
// errors terminate immediately.
func ExponentialBackoff(backoff Backoff, condition ConditionFunc) error {
	for backoff.Steps > 0 {
		if ok, err := condition(); err != nil || ok {
			return err
		}
		if backoff.Steps == 1 {
			break
		}
		time.Sleep(backoff.Step())
	}
	return ErrWaitTimeout
}

// Poll tries a condition func until it returns true, an error, or the timeout
// is reached.
//
// Poll always waits the interval before the run of 'condition'.
// 'condition' will always be invoked at least once.
//
// Some intervals may be missed if the condition takes too long or the time
// window is too short.
//
// If you want to Poll something forever, see PollInfinite.
func Poll(interval, timeout time.Duration, condition ConditionFunc) error {
	return pollInternal(poller(interval, timeout), condition)
}

func pollInternal(wait WaitFunc, condition ConditionFunc) error {
	done := make(chan struct{})
	defer close(done)
	return WaitFor(wait, condition, done)
}

// PollImmediate tries a condition func until it returns true, an error, or the timeout
// is reached.
//
// PollImmediate always checks 'condition' before waiting for the interval. 'condition'
// will always be invoked at least once.
//
// Some intervals may be missed if the condition takes too long or the time
// window is too short.
//
// If you want to immediately Poll something forever, see PollImmediateInfinite.
func PollImmediate(interval, timeout time.Duration, condition ConditionFunc) error {
	return pollImmediateInternal(poller(interval, timeout), condition)
}

func pollImmediateInternal(wait WaitFunc, condition ConditionFunc) error {
	done, err := condition()
	if err != nil {
		return err
	}
	if done {
		return nil
	}
	return pollInternal(wait, condition)
}

// PollInfinite tries a condition func until it returns true or an error
//
// PollInfinite always waits the interval before the run of 'condition'.
//
// Some intervals may be missed if the condition takes too long or the time
// window is too short.
func PollInfinite(interval time.Duration, condition ConditionFunc) error {
	done := make(chan struct{})
	defer close(done)
	return PollUntil(interval, condition, done)
}

// PollImmediateInfinite tries a condition func until it returns true or an error
//
// PollImmediateInfinite runs the 'condition' before waiting for the interval.
//
// Some intervals may be missed if the condition takes too long or the time
// window is too short.
func PollImmediateInfinite(interval time.Duration, condition ConditionFunc) error {
	done, err := condition()
	if err != nil {
		return err
	}
	if done {
		return nil
	}
	return PollInfinite(interval, condition)
}

// PollUntil tries a condition func until it returns true, an error or stopCh is
// closed.
//
// PollUntil always waits interval before the first run of 'condition'.
// 'condition' will always be invoked at least once.
func PollUntil(interval time.Duration, condition ConditionFunc, stopCh <-chan struct{}) error {
	ctx, cancel := contextForChannel(stopCh)
	defer cancel()
	return WaitFor(poller(interval, 0), condition, ctx.Done())
}

// PollImmediateUntil tries a condition func until it returns true, an error or stopCh is closed.
//
// PollImmediateUntil runs the 'condition' before waiting for the interval.
// 'condition' will always be invoked at least once.
func PollImmediateUntil(interval time.Duration, condition ConditionFunc, stopCh <-chan struct{}) error {
	done, err := condition()
	if err != nil {
		return err
	}
	if done {
		return nil
	}
	select {
	case <-stopCh:
		return ErrWaitTimeout
	default:
		return PollUntil(interval, condition, stopCh)
	}
}

// WaitFunc creates a channel that receives an item every time a test
// should be executed and is closed when the last test should be invoked.
type WaitFunc func(done <-chan struct{}) <-chan struct{}

// WaitFor continually checks 'fn' as driven by 'wait'.
//
// WaitFor gets a channel from 'wait()'', and then invokes 'fn' once for every value
// placed on the channel and once more when the channel is closed. If the channel is closed
// and 'fn' returns false without error, WaitFor returns ErrWaitTimeout.
//
// If 'fn' returns an error the loop ends and that error is returned. If
// 'fn' returns true the loop ends and nil is returned.
//
// ErrWaitTimeout will be returned if the 'done' channel is closed without fn ever
// returning true.
//
// When the done channel is closed, because the golang `select` statement is
// "uniform pseudo-random", the `fn` might still run one or multiple time,
// though eventually `WaitFor` will return.
func WaitFor(wait WaitFunc, fn ConditionFunc, done <-chan struct{}) error {
	stopCh := make(chan struct{})
	defer close(stopCh)
	c := wait(stopCh)
	for {
		select {
		case _, open := <-c:
			ok, err := fn()
			if err != nil {
				return err
			}
			if ok {
				return nil
			}
			if !open {
				return ErrWaitTimeout
			}
		case <-done:
			return ErrWaitTimeout
		}
	}
}

// poller returns a WaitFunc that will send to the channel every interval until
// timeout has elapsed and then closes the channel.
//
// Over very short intervals you may receive no ticks before the channel is
// closed. A timeout of 0 is interpreted as an infinity, and in such a case
// it would be the caller's responsibility to close the done channel.
// Failure to do so would result in a leaked goroutine.
//
// Output ticks are not buffered. If the channel is not ready to receive an
// item, the tick is skipped.
func poller(interval, timeout time.Duration) WaitFunc {
	return WaitFunc(func(done <-chan struct{}) <-chan struct{} {
		ch := make(chan struct{})

		go func() {
			defer close(ch)

			tick := time.NewTicker(interval)
			defer tick.Stop()

			var after <-chan time.Time
			if timeout != 0 {
				// time.After is more convenient, but it
				// potentially leaves timers around much longer
				// than necessary if we exit early.
				timer := time.NewTimer(timeout)
				after = timer.C
				defer timer.Stop()
			}

			for {
				select {
				case <-tick.C:
					// If the consumer isn't ready for this signal drop it and
					// check the other channels.
					select {
					case ch <- struct{}{}:
					default:
					}
				case <-after:
					return
				case <-done:
					return
				}
			}
		}()

		return ch
	})
}

// resetOrReuseTimer avoids allocating a new timer if one is already in use.
// Not safe for multiple threads.
func resetOrReuseTimer(t *time.Timer, d time.Duration, sawTimeout bool) *time.Timer {
	if t == nil {
		return time.NewTimer(d)
	}
	if !t.Stop() && !sawTimeout {
		<-t.C
	}
	t.Reset(d)
	return t
}

Logo

K8S/Kubernetes社区为您提供最前沿的新闻资讯和知识内容

更多推荐