概述

       ringbuff 是一款通用FIFO环形缓冲区实现的开源库,并遵循 MIT 开源许可协议。

ringbuff优点:

  • 使用C99语法编写,并且没有平台相关代码;
  • 没有动态内存分配;
  • 使用更优的内存复制而不是循环从内存读取数据/向内存写入数据;

GitHub:https://github.com/MaJerle/lwrb

硬件:STM32F103CBT6最小系统板
软件:Keil 5.29  + STM32CubeMX6.01

一、使用方法

详情请移步阅读官网文档
https://docs.majerle.eu/projects/lwrb/en/latest/

二、STM32CubeMx配置


三、Examples

1、进入GitHub拉取源码

2、打开STM32CubeMx生成的keil工程,新建bsp文件夹,按照如下步骤进行。

3、把所有.c文件添加到Keil中来。

4、添加头文件路径

5、编译工程

6、解决报错问题

7、配置lwrb.h中LWRB_VOLATILE 定义类型,手动添加即可。

按照以上步骤进行,移植工作已完成。
8、main.c文件
 

/* USER CODE BEGIN Header */
/**
  ******************************************************************************
  * @file           : main.c
  * @brief          : Main program body
  ******************************************************************************
  * @attention
  *
  * <h2><center>&copy; Copyright (c) 2021 STMicroelectronics.
  * All rights reserved.</center></h2>
  *
  * This software component is licensed by ST under BSD 3-Clause license,
  * the "License"; You may not use this file except in compliance with the
  * License. You may obtain a copy of the License at:
  *                        opensource.org/licenses/BSD-3-Clause
  *
  ******************************************************************************
  */
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "usart.h"
#include "gpio.h"

/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "stdio.h"
#include "lwrb.h"
/* USER CODE END Includes */

/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */

/* USER CODE END PTD */

/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */

/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
#define 	ENABLEUSARR_TEST	1
/* USER CODE END PM */

/* Private variables ---------------------------------------------------------*/

/* USER CODE BEGIN PV */

/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
/* USER CODE BEGIN PFP */

/* USER CODE END PFP */

/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */

#if ENABLEUSARR_TEST	

//用于串口接收
uint8_t recv_data = 0;

//用于存储从缓冲区读取出的数据
uint8_t read_data = 0;

//用于串口1的ringbuff句柄
lwrb_t	usart1_ringbuff;

//开辟一块内存用于缓冲区
#define USART1_BUFFDATA_SIZE	200
uint8_t usart1_buffdata[USART1_BUFFDATA_SIZE];

#else

uint8_t lwrb_data[8 + 1];
lwrb_t buff;
static void debug_buff(uint8_t cmp, size_t r_w, size_t r_r, size_t r_f, size_t r_e);
uint8_t tmp[8];

void my_buff_evt_fn(lwrb_t* buff, lwrb_evt_type_t type, size_t len) {
    switch (type) {
        case LWRB_EVT_RESET:
            printf("[EVT] Buffer reset event!\r\n");
            break;
        case LWRB_EVT_READ:
            printf("[EVT] Buffer read event: %d byte(s)!\r\n", (int)len);
            break;
        case LWRB_EVT_WRITE:
            printf("[EVT] Buffer write event: %d byte(s)!\r\n", (int)len);
            break;
        default: break;
    }
}

static void debug_buff(uint8_t cmp, size_t r_w, size_t r_r, size_t r_f, size_t r_e) {
    /* Previous and current write, read pointers and full, empty values */
    static size_t p_r, p_w, p_f, p_e;
    size_t r, w, f, e;

    r = buff.r;
    w = buff.w;
    f = lwrb_get_full(&buff);
    e = lwrb_get_free(&buff);

    printf("R: %3d, W: %3d, F: %3d, E: %3d\r\n", (int)r, (int)w, (int)f, (int)e);
}

#endif


/* USER CODE END 0 */

/**
  * @brief  The application entry point.
  * @retval int
  */
int main(void)
{
  /* USER CODE BEGIN 1 */
#if ENABLEUSARR_TEST	
	uint32_t i = 0;
	volatile uint8_t len = 0;
	uint8_t data_len = 0;
#else
	
	size_t len;
#endif	
  /* USER CODE END 1 */

  /* MCU Configuration--------------------------------------------------------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();

  /* USER CODE BEGIN Init */

  /* USER CODE END Init */

  /* Configure the system clock */
  SystemClock_Config();

  /* USER CODE BEGIN SysInit */

  /* USER CODE END SysInit */

  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_USART1_UART_Init();
  /* USER CODE BEGIN 2 */
	
#if ENABLEUSARR_TEST
	printf("lwrb Port By champion666\r\n");

	//初始化ringbuff句柄
	if(1 != lwrb_init(&usart1_ringbuff, (uint8_t*)usart1_buffdata, USART1_BUFFDATA_SIZE))
	{
		printf("usart1 lwrb init fail.\r\n");
	}

	lwrb_is_ready(&usart1_ringbuff);
	
	//使能串口中断接收
	HAL_UART_Receive_IT(&huart1, (uint8_t*)&recv_data, 1);
#else
	
	lwrb_init(&buff, lwrb_data, sizeof(lwrb_data));
	lwrb_set_evt_fn(&buff, my_buff_evt_fn);

	lwrb_write(&buff, "abc", 3);
	lwrb_write(&buff, "abc", 3);
	lwrb_write(&buff, "abc", 3);
	len = lwrb_read(&buff, tmp, 9);

	buff.r = 0;
	buff.w = 0;
	memset(lwrb_get_linear_block_write_address(&buff), 'A', lwrb_get_linear_block_write_length(&buff));
	lwrb_advance(&buff, lwrb_get_linear_block_write_length(&buff));

	buff.r = 2;
	buff.w = 0;
	memset(lwrb_get_linear_block_write_address(&buff), 'B', lwrb_get_linear_block_write_length(&buff));
	lwrb_advance(&buff, lwrb_get_linear_block_write_length(&buff));

	buff.r = 3;
	buff.w = 3;
	memset(lwrb_get_linear_block_write_address(&buff), 'C', lwrb_get_linear_block_write_length(&buff));
	lwrb_advance(&buff, lwrb_get_linear_block_write_length(&buff));

	lwrb_reset(&buff);
	
	for (size_t r = 0; r < sizeof(lwrb_data); ++r) {
        void* ptr;
        for (size_t w = 0; w < sizeof(lwrb_data); ++w) {
           buff.r = r;
           buff.w = w;
           ptr = lwrb_get_linear_block_write_address(&buff);
           len = lwrb_get_linear_block_write_length(&buff);
           printf("W: %3d, R: %3d, LEN: %3d\r\n", (int)w, (int)r, (int)len);
        }
  }
	
	
#endif
	
  /* USER CODE END 2 */

  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {
    /* USER CODE END WHILE */

    /* USER CODE BEGIN 3 */
#if ENABLEUSARR_TEST			
		while((len = lwrb_read(&usart1_ringbuff, (uint8_t*)&read_data, sizeof(read_data))) > 0)
		{
			/* 捕获起始标志 */
			if(read_data == 0x35)
			{
				//读取数据字节数,最大支持0xFF
				if((len = lwrb_read(&usart1_ringbuff, (uint8_t*)&read_data, sizeof(read_data))) > 0)
				{
					data_len = read_data;
					printf("your data has %d byte(s):\r\n\t", data_len);
				}
				
				//提取data_len个数据
				for(i = 0; i < data_len; i++)
				{
					if((len = lwrb_read(&usart1_ringbuff, (uint8_t*)&read_data, sizeof(read_data))) > 0)
					{
						printf("[0x%02x] ", read_data); 
					}
				}
				//printf("overflow\r\n");
				printf("\r\n");
			}
		}
		HAL_Delay(200);
#else


#endif		
  }
  /* USER CODE END 3 */
}

/**
  * @brief System Clock Configuration
  * @retval None
  */
void SystemClock_Config(void)
{
  RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};

  /** Initializes the RCC Oscillators according to the specified parameters
  * in the RCC_OscInitTypeDef structure.
  */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
  RCC_OscInitStruct.HSEState = RCC_HSE_ON;
  RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1;
  RCC_OscInitStruct.HSIState = RCC_HSI_ON;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }
  /** Initializes the CPU, AHB and APB buses clocks
  */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;

  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
  {
    Error_Handler();
  }
}

/* USER CODE BEGIN 4 */

#if ENABLEUSARR_TEST	

/* 中断回调函数 */
void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart)
{
    /* 判断是哪个串口触发的中断 */
    if(huart ->Instance == USART1)
    {
				/* 将接收到的数据写入缓冲区 */
				lwrb_write(&usart1_ringbuff, &recv_data, 1);
        //重新使能串口接收中断
        HAL_UART_Receive_IT(huart, (uint8_t*)&recv_data, 1);
    }
}

#else


#endif


#ifdef __GNUC__
  /* With GCC/RAISONANCE, small printf (option LD Linker->Libraries->Small printf
     set to 'Yes') calls __io_putchar() */
  #define PUTCHAR_PROTOTYPE int __io_putchar(int ch)
#else
  #define PUTCHAR_PROTOTYPE int fputc(int ch, FILE *f)
#endif /* __GNUC__ */
/**
  * @brief  Retargets the C library printf function to the USART.
  * @param  None
  * @retval None
  */
PUTCHAR_PROTOTYPE
{
  /* Place your implementation of fputc here */
  /* e.g. write a character to the EVAL_COM1 and Loop until the end of transmission */
  HAL_UART_Transmit(&huart1, (uint8_t *)&ch, 1, 0xFFFF);
 
  return ch;
}
 
int fgetc(FILE * f)
{
  uint8_t ch = 0;
  HAL_UART_Receive(&huart1, (uint8_t *)&ch, 1, 0xffff);
  return ch;
}

/* USER CODE END 4 */

/**
  * @brief  This function is executed in case of error occurrence.
  * @retval None
  */
void Error_Handler(void)
{
  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */
  __disable_irq();
  while (1)
  {
  }
  /* USER CODE END Error_Handler_Debug */
}

#ifdef  USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  * @param  file: pointer to the source file name
  * @param  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t *file, uint32_t line)
{
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,
     ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

四、运行结果


设置串口助手定时100ms发生一次数据,200ms读取数据。

传送门->代码

参考文章:https://mculover666.blog.csdn.net/article/details/106445879

五、总结

    好了,就介绍到此,有了这个神器,特别是处理一些大量数据时非常适合这样场景。

 

 

 

 

 

 

Logo

瓜分20万奖金 获得内推名额 丰厚实物奖励 易参与易上手

更多推荐