【Matlab代码】微分方程的解析解和数值解
·
Matlab求微分方程的解析解
用法:dsolve(‘equation’,‘condition;,‘v’)
说明:(1)equation是方程式,condition是条件,v是自变量(确省为t)
(2)若不带条件,则解中带积分常数。
(3)如果没有显示解,则系统尝试给出隐氏解。
(4)如果无隐氏解,则返回空符号。
格式:(1)y’表示为Dy,y’‘表示为D2y,依次类推。
(2)有多个方程或多个条件时,写多个对应的参数即可。
例1:求微分方程y’’-5y’+6y=e^ax
y=dsolve('D2y-5*Dy+6*y=exp(a*x)','x')
则原方程通解为:
例2:求微分方程
满足条件
的特解。
y=dsolve('(1+x^2)*Dy+2*x*y=x*exp(x^2)','y(0)=-1/2','x')
即原方程特解为:
Matlab求微分方程的数值解:
用法:[t,Y]=ode45(odefun,tspan,y0)
说明:(1)odefun是待求解一阶微分方程或方程组的句柄,对应一个M文件。
(2)tspan求解区间,y0为初值。
(3)返回值t为自变量的数据列。
(4)返回值Y一般是矩阵,每列对应一个待解变量的数据列。
例:求微分方程
的数值解,条件
function dy=odefun1(x,y)
dy=zeros(2,1);%存储y1,y2的导数
dy(1)=y(2);%第一个方程
dy(2)=-y(1)-sin(2*x);%第二个方程
[x,y]=ode45('odefun1',[pi,2*pi],[1;1]);
结果的可视化:
plot(x,y(:,1));xlabel('x');ylabel('y')
plot(x,y(:,2));xlabel('x');ylabel('y\prime')
阅读全文
AI总结
更多推荐
相关推荐
查看更多
A2A

谷歌开源首个标准智能体交互协议Agent2Agent Protocol(A2A)
ai-agents-for-beginners

这个项目是一个针对初学者的 AI 代理课程,包含 10 个课程,涵盖构建 AI 代理的基础知识。源项目地址:https://github.com/microsoft/ai-agents-for-beginners
n8n

n8n 是一个工作流自动化平台,它结合了代码的灵活性和无代码的高效性。支持 400+ 集成、原生 AI 功能以及公平开源许可,n8n 能让你在完全掌控数据和部署的前提下,构建强大的自动化流程。源项目地址:https://github.com/n8n-io/n8n
所有评论(0)