【OpenCV图像处理】1.26 直方图反向投影(Back Projection)
1. 相关理论反向投影反向投影是反映直方图模型在目标图像中的分布情况简单点说就是用直方图模型去目标图像中寻找是否有相似的对象。通常用HSV色彩空间的HS两个通道直方图模型反向投影 步骤1.建立直方图模型2.计算待测图像直方图并映射到模型中3.从模型反向计算生成图像实现步骤与相关API加载图片imread将图像从RGB色彩空间转换到HSV色彩空间cvt...
·
1. 相关理论
-
反向投影
- 反向投影是反映直方图模型在目标图像中的分布情况
- 简单点说就是用直方图模型去目标图像中寻找是否有相似的对象。通常用HSV色彩空间的HS两个通道直方图模型
-
反向投影 步骤
- 1.建立直方图模型
- 2.计算待测图像直方图并映射到模型中
- 3.从模型反向计算生成图像
-
实现步骤与相关API
-
加载图片imread
-
将图像从RGB色彩空间转换到HSV色彩空间cvtColor
-
计算直方图和归一化calcHist与normalize
-
Mat与MatND其中Mat表示二维数组,MatND表示三维或者多维数据,此处均可以用Mat表示。
-
计算反向投影图像 -
calcBackProject
,一共三个calcBackProject
函数,参数不同,利用的是函数重载功能,这里只介绍第一个重载函数void cv::calcBackProject( const Mat * images, int nimages, const int * channels, InputArray hist, OutputArray backProject, const float ** ranges, double scale = 1, bool uniform = true )
以上参数的详细解释:
- images Source arrays. They all should have the same depth, CV_8U, CV_16U or CV_32F , and the same size. Each of them can have an arbitrary number of channels.
- nimages Number of source images.
- channels The list of channels used to compute the back projection. The number of channels must match the histogram dimensionality. The first array channels are numerated from 0 to images[0].channels()-1 , the second array channels are counted from images[0].channels() to images[0].channels() + images[1].channels()-1, and so on.
- hist Input histogram that can be dense or sparse.
- backProject Destination back projection array that is a single-channel array of the same size and depth as images[0] .
- ranges Array of arrays of the histogram bin boundaries in each dimension. See calcHist .
- scale Optional scale factor for the output back projection.
- uniform Flag indicating whether the histogram is uniform or not (see above).
-
2. 源码 & 效果展示
源码:
#include <iostream>
#include <opencv2/opencv.hpp>
#include <opencv2/imgproc/types_c.h>
using namespace std;
using namespace cv;
#ifndef P26
#define P26 26
#endif
#if P27 //直方图反向投影
Mat src; Mat hsv; Mat hue;
int bins = 12;
void Hist_And_Backprojection(int, void*) {
float range[] = { 0, 180 };
const float *histRanges = { range };
Mat h_hist;
calcHist(&hue, 1, 0, Mat(), h_hist, 1, &bins, &histRanges, true, false);
normalize(h_hist, h_hist, 0, 255, NORM_MINMAX, -1, Mat());
Mat backPrjImage;
calcBackProject(&hue, 1, 0, h_hist, backPrjImage, &histRanges, 1, true);
imshow("BackProj", backPrjImage);
int hist_h = 400;
int hist_w = 400;
Mat histImage(hist_w, hist_h, CV_8UC3, Scalar(0, 0, 0));
int bin_w = (hist_w / bins);
for (int i = 1; i < bins; i++) {
rectangle(histImage,
Point((i - 1)*bin_w, (hist_h - cvRound(h_hist.at<float>(i - 1) * (400 / 255)))),
Point(i*bin_w, hist_h),
Scalar(0, 0, 255), -1);
}
imshow("Histogram", histImage);
return;
}
#endif
int main() {
std::string path = "../color_line.JPG";
cv::Mat img = cv::imread(path, 5);
if(img.empty())
{
std::cout << "open file failed" << std::endl;
return -1;
}
#if P26 //直方图反向投影
src = img;
cvtColor(src, hsv, CV_BGR2HSV);
hue.create(hsv.size(), hsv.depth());
int nchannels[] = { 0, 0 };
mixChannels(&hsv, 1, &hue, 1, nchannels, 1);
createTrackbar("Histogram Bins:", str_input, &bins, 180, Hist_And_Backprojection);
Hist_And_Backprojection(0, 0);
imshow(str_input, src);
#endif
cv::waitKey(0);
cv::destroyAllWindows();
return 0;
}
效果展示:
点击阅读全文
更多推荐
目录
所有评论(0)