
简介
该用户还未填写简介
擅长的技术栈
可提供的服务
暂无可提供的服务
基础的统计理论有助于对机器学习的算法和数据挖掘的结果做出解释,只有做出合理的解读,数据的价值才能够体现。数理统计(mathematical statistics)根据观察或实验得到的数据来研究随机现象,并对研究对象的客观规律做出合理的估计和判断。 数理统计以概率论为理论基础,但两者之间存在方法上的本质区别。概率论作用的前提是随机变量的分布已知,根据已知的分布来分析随机变量的特征与..
除了线性代数之外,概率论(probability theory)也是人工智能研究中必备的数学基础。随着连接主义学派的兴起,概率统计已经取代了数理逻辑,成为人工智能研究的主流工具。 同线性代数一样,概率论也代表了一种看待世界的方式,其关注的焦点是无处不在的可能性。对随机事件发生的可能性进行规范的数学描述就是概率论的公理化过程。概率的公理化结构体现出的是对概率本质的一种认识。 ...
必备的数学知识是理解人工智能不可或缺的要素,所有的人工智能技术归根到底都建立在数学模型之上,而这些数学模型又都离不开线性代数(linear algebra)的理论框架。 线性代数不仅仅是人工智能的基础,更是现代数学和以现代数学作为主要分析方法的众多学科的基础。从量子力学到图像处理都离不开向量和矩阵的使用。而在向量和矩阵背后,线性代数的核心意义在于提供了⼀种看待世界的抽象视角:万事..
人工智能的目标就是最优化:在复杂环境与多体交互中做出最优决策。几乎所有的人工智能问题最后都会归结为一个优化问题的求解,因而最优化理论是人工智能必备的基础知识。 最优化理论(optimization)研究的问题是判定给定目标函数的最大值(最小值)是否存在,并找到令目标函数取到最大值(最小值)的数值。 要实现最小化或最大化的函数被称为目标函数(objective funct...
必备的数学知识是理解人工智能不可或缺的要素,所有的人工智能技术归根到底都建立在数学模型之上,而这些数学模型又都离不开线性代数(linear algebra)的理论框架。 线性代数不仅仅是人工智能的基础,更是现代数学和以现代数学作为主要分析方法的众多学科的基础。从量子力学到图像处理都离不开向量和矩阵的使用。而在向量和矩阵背后,线性代数的核心意义在于提供了⼀种看待世界的抽象视角:万事..
游戏的体现形式最主要是 2D 和 3D。最近比较流行的 AR/VR 等,都是属于 3D 类的体现形式。 最初的游戏,2D 是绝对的主流。虽然现如今 3D 游戏大行
人工智能的目标就是最优化:在复杂环境与多体交互中做出最优决策。几乎所有的人工智能问题最后都会归结为一个优化问题的求解,因而最优化理论是人工智能必备的基础知识。 最优化理论(optimization)研究的问题是判定给定目标函数的最大值(最小值)是否存在,并找到令目标函数取到最大值(最小值)的数值。 要实现最小化或最大化的函数被称为目标函数(objective funct...







