logo
publist
写文章

简介

该用户还未填写简介

擅长的技术栈

可提供的服务

暂无可提供的服务

浅析深度ResNet有效的原理

深度残差网络是ImageNet比赛中,效果最好的网络,在深度学习的探究过程中,发现对深度的扩展远远比广度的扩展效果要达到的好的太多。理论认为,同层的不同神经元学习不同的特征,越往后层的神经元学习特征的抽象程度越高。可以这样理解,如果要识别一个汽车如下图:上面的图我画的有些粗糙,但是意思应该表达清楚了,特征的组合识别一个物体,如果特征越抽象则识别物体更加简单,也就是说网络模型越深越好了?那么在搭建一

为什么交叉熵损失函数值越小分类效果越好?

在学习机器学习过程中,我们经常会用到损失函数来判断模型是否在学习,经常使用的损失函数大多是平方损失函数,与交叉熵损失函数。平方损失函数,我们很容易理解为什么值越小分类效果越好。Loss(w)=1m∑im(yi−yhati)2Loss(w)=1m∑im(yi−yihat)2Loss(w)=\frac{1}{m}\sum_{i}^{m}(y_i-y^{hat}_i)^2很显然,如果预测的越接近,则..

3sigma模型案例分析彻底搞懂置信度与置信区间

学习机器学习算法时,经常会碰到数理统计中置信区间、置信度,虽然学习过相关课程,但是每次遇到它总是懵懵懂懂,似懂非懂。为了对这两个概念有深入的了解,这里做了相关的介绍。为了不老是纠缠于数理统计理论,或者学习了概念之后又无法应用的情况发生,这里以一个机器学习特征工程中常用的异常值检测算法--3sigma模型,来解释这两个概念,这样你既学会了一种异常值模型,又弄懂了这个概念,这个买卖划得来。异常值检测算

几种常见的数据分布

学习机器学习算法过程中,少不了概率分布的概念,说起概率分布我的脑中除了正太分布那条线就再也没有其他印象了,这个缺陷使我在推导公式过程中遇到很多坑,也在理解数据特征中错过很多。模型的基线取决于数据的好坏,数据的好坏取决与你对数据的理解。所以为了更加懂数据,就先理解一下数据有哪些分布吧。伯努利分布名字听起来很陌生,其实离我们生活很近,抛硬币都是老掉牙的例子了,正面或者反面。逻辑回归二分类的结果...

为什么交叉熵损失函数值越小分类效果越好?

在学习机器学习过程中,我们经常会用到损失函数来判断模型是否在学习,经常使用的损失函数大多是平方损失函数,与交叉熵损失函数。平方损失函数,我们很容易理解为什么值越小分类效果越好。Loss(w)=1m∑im(yi−yhati)2Loss(w)=1m∑im(yi−yihat)2Loss(w)=\frac{1}{m}\sum_{i}^{m}(y_i-y^{hat}_i)^2很显然,如果预测的越接近,则..

到底了