
简介
该用户还未填写简介
擅长的技术栈
可提供的服务
暂无可提供的服务
本文主要给出了在实现网络或者调节代码过程使用的以及平时看一些文章记录下来的一些小技巧,主要针对卷积网络和图像处理。就个人感受,有些技巧还是非常有效的,而且通常可以通过看开源库的一些文档或者源代码来发掘这些内容,最后能够称为自己所用。1.构造validation set一般数据集可能不会给出验证集,所以自己会从给的训练集中按照一定比例(9:1)分离出验证集。2.增加训练数据为了更好的
转载自:OpenCV学习笔记大集锦 – 视觉机器人http://www.cvrobot.net/collect-opencv-resource-learn-study-note-chinese/整理了我所了解的有关OpenCV的学习笔记、原理分析、使用例程等相关的博文。排序不分先后,随机整理的。如果有好的资源,也欢迎介绍和分享。1:OpenCV学习笔记
引言始于Edwin Herbert Land(埃德温·赫伯特·兰德)于1971年提出的一种被称为色彩恒常的理论,并基于此理论的图像增强方法。Retinex这个词由视网膜(Retina)和大脑皮层(Cortex)合成而来.之所以这样设计,表明Land他也不清楚视觉系统的特性究竟取决于此两个生理结构中的哪一个,抑或两者都有关系。不同于传统的图像增强算法,如线性、非线性变换、图像锐化等只能增
Retinex是一种常用的建立在科学实验和科学分析基础上的图像增强方法,它是Edwin.H.Land于1963年提出的。就跟Matlab是由Matrix和Laboratory合成的一样,Retinex也是由两个单词合成的一个词语,他们分别是retina 和cortex,即:视网膜和皮层。Land的retinex模式是建立在以下三个假设之上的:(1)真实世界是无颜色的,我们所感知的颜色是光与
在检测出运动的物体之后,我还需要知道运动的方向,使用了上一节中的办法检测运动我发现很难去计算运动方向,开始考虑通过计算轮廓的中点的变化来实现,但是因为每次检测出得轮廓的数量不稳定,所以这个办法会让误差不可控。这时我发现了goodFeaturesToTrack函数,简直是救了我,goodFeaturesToTrack函数可以获取图像中的最大特征值的角点,以下是我的思路:对两帧图像做一
局部特征(1)——入门篇 局部特征 (local features),是近来研究的一大热点。大家都了解全局特征(global features),就是方差、颜色直方图等等。如果用户对整个图像的整体感兴趣,而不是前景本身感兴趣的话,全局特征用来描述总是比较合适的。但是无法分辨出前景和背景却是全局特征本身就有的劣势,特别是在我们关注的对象受到遮挡等影响的时候,全局特征很有可能就被破坏掉了
预处理是人脸识别过程中的一个重要环节。输入图像由于图像采集环境的不同,如光照明暗程度以及设备性能的优劣等,往往存在有噪声,对比度不够等缺点。另外,距离远近,焦距大小等又使得人脸在整幅图像中间的大小和位置不确定。为了保证人脸图像中人脸大小,位置以及人脸图像质量的一致性,必须对图像进行预处理。 人脸图像的预处理主要包括人脸扶正,人脸图像的增强,以及归一化等工作。人脸扶正是为了得到人
人工神经网络起源于上世纪40年代,到今天已经70年历史了。就像人的一生,经历了起起落落,有过辉煌,有过黯淡,有过嘈杂,有过冷清。总体说来,过去的20年中人工神经网络的研究不温不火,直到最近三五年,随着深度学习概念的提出,人工神经网络才又重新焕发生机,甚至再度掀起研究热潮。本文简述一下人工神经网络的“前世今生”,并简单展望一下它的未来。第一个神经元模型是1943年McCulloch和Pitt
转载自:http://www.cnblogs.com/subconscious/p/5058741.html神经网络是一门重要的机器学习技术。它是目前最为火热的研究方向--深度学习的基础。学习神经网络不仅可以让你掌握一门强大的机器学习方法,同时也可以更好地帮助你理解深度学习技术。 本文以一种简单的,循序的方式讲解神经网络。适合对神经网络了解不多的同学。本文对阅读没有一定的前提
原文:Real-WorldMachine Learning: Model Evaluation and Optimization 作者:Henrik Brink, Joseph W. Richards, Mark Fetherolf 监督学习的主要任务就是用模型实现精准的预测。我们希望自己的机器学习模型在新数据(未被标注过的)上取得尽可能高的准确率。换句话说,也就







