
简介
该用户还未填写简介
擅长的技术栈
未填写擅长的技术栈
可提供的服务
暂无可提供的服务
机器学习中的 K-均值聚类算法及其优缺点
K-均值聚类算法是一种常用的无监督学习算法,用于将数据集中的样本划分为K个互不重叠的簇。该算法的原理是基于样本之间的相似度或距离来进行聚类。总之,K-均值聚类算法是一种简单而常用的聚类算法,但在实际应用中需要根据数据集的特点和需求选择合适的聚类算法或改进方法。

分布式应用开发-OpenHarmony 开发者大会2024
分布式应用开发-OpenHarmony 开发者大会2024

到底了