简介
该用户还未填写简介
擅长的技术栈
可提供的服务
暂无可提供的服务
1. 在训练的过程中应用了正则化,但是在对验证集计算损失的时候没有采用正则化。比如在损失函数中加入了L1,L2等正则项,或者dropout。正则化会牺牲训练精度,但是可以通过提高验证集和测试集的精度防止过拟合。如果在验证集中也加入正则项,那么会改善验证集损失小于训练集损失这种情况。2. 在计算训练集的损失时,它是边训练边计算的,不是等训练完一轮(epoch)后再计算总的训练集损失的。实际上,我们的
译自:http://sebastianruder.com/multi-task/1. 前言在机器学习中,我们通常关心优化某一特定指标,不管这个指标是一个标准值,还是企业KPI。为了达到这个目标,我们训练单一模型或多个模型集合来完成指定得任务。然后,我们通过精细调参,来改进模型直至性能不再提升。尽管这样做可以针对一个任务得到一个可接受得性能,但是我们可能忽略了一些信息,这些信息有助于在我们关心的指标
目前,多模态数据融合主要有三种融合方式:前端融合(early-fusion)或数据水平融合(data-level fusion)、后端融合(late-fusion)或决策水平融合(decision-level fusion)和中间融合(intermediate-fusion)。前端融合将多个独立的数据集融合成一个单一的特征向量,然后输入到机器学习分类器中。由于多模态数据的前端融合往往无法充分利..
概述新赛季,天池终于迎来了我本专业的命题:菜鸟物流规划和需求预测。接下来的比赛中,本文会陆续记录比赛的详细过程,但是不能保证最后的结果优劣,希望对大家有一些启发,文章仅供参考,请勿模仿。什么是天池大赛下面是官方介绍天池平台基于阿里云的海量数据离线处理服务ODPS,向学术界提供科研数据和云计算资源,旨在打造“数据众智、众创”第一平台。简单来说,天池就是类似
Meta提出:ViT需要Registers
目录基础知识-向量的内积Gram matrix介绍Gram matrix的应用-风格迁移一、基础知识-向量的内积1.1向量的内积定义:也叫向量的点乘,对两个向量执行内积运算,就是对这两个向量对应位一一相乘之后求和的操作,内积的结果是一个标量。1.2实例:a和b的内积公式为:1.3作用:内积判断向量a和向量b之间的夹角和方向关系a·b>0方向基本相同,夹角在0°到90°之间a·b=0正交,相互
01 算法起源粒子群优化算法(PSO)是一种进化计算技术(evolutionary computation),1995 年由Eberhart 博士和kennedy 博士提出,源于对鸟群捕食的行为研究 。该算法最初是受到飞鸟集群活动的规律性启发,进而利用群体智能建立的一个简化模型。粒子群算法在对动物集群活动行为观察基础上,利用群体中的个体对信息的共享使整个群体的运动在问题求解空间中产生从无序到有序的
注意力模型最近几年在深度学习各个领域被广泛使用,无论是图像处理、语音识别还是自然语言处理的各种不同类型的任务中,都很容易遇到注意力模型的身影。所以,了解注意力机制的工作原理对于关注深度学习技术发展的技术人员来说有很大的必要。人类的视觉注意力从注意力模型的命名方式看,很明显其借鉴了人类的注意力机制,因此,我们首先简单介绍人类视觉的选择性注意力机制。图1 人类的视觉注意力视觉注意力机制是人类视觉所特有
增强学习(三)----- MDP的动态规划解法上一篇我们已经说到了,增强学习的目的就是求解马尔可夫决策过程(MDP)的最优策略,使其在任意初始状态下,都能获得最大的Vπ值。(本文不考虑非马尔可夫环境和不完全可观测马尔可夫决策过程(POMDP)中的增强学习)。那么如何求解最优策略呢?基本的解法有三种:动态规划法(dynamic programming methods)蒙特卡罗