logo
publist
写文章

简介

该用户还未填写简介

擅长的技术栈

可提供的服务

暂无可提供的服务

深度学习框架darknet:yolov3训练自己数据时遇到的问题(Cannot load image "" STB Reason: can't fopen)

出现cannnot load image问题可能原因:①路径原因:如果不是用脚本写的路径,可能会存在中英文字符不相同的情况(本人就是被一个中文的括号和英文的括号不匹配搞了一两个钟)。②训练前:需要用notepad++修改,先点击视图->显示符号->显示所有字符,然后点编辑->文档格式转换->转liunx,保证每一行最后都只有一个LF,一般是最后一行的问题。...

深度学习框架darknet:yolov3训练自己数据时遇到的问题(Cannot load image "" STB Reason: can't fopen)

出现cannnot load image问题可能原因:①路径原因:如果不是用脚本写的路径,可能会存在中英文字符不相同的情况(本人就是被一个中文的括号和英文的括号不匹配搞了一两个钟)。②训练前:需要用notepad++修改,先点击视图->显示符号->显示所有字符,然后点编辑->文档格式转换->转liunx,保证每一行最后都只有一个LF,一般是最后一行的问题。...

随机森林的随机性体现在哪里?

随机森林是一个包含多个决策树的分类器,并且其输出的类别是由个别树输出的类别的众数而定。随机森林的随机性体现在每颗树的训练样本是随机的,树中每个节点的分裂属性集合也是随机选择确定的。有了这2个随机的保证,随机森林就不会产生过拟合的现象了。 随机森林是用一种随机的方式建立的一个森林,森林是由很多棵决策树组成的,每棵树所分配的训练样本是随机的,树中每个节点的分裂属性集合也是随机选择确定的。...

线性回归和逻辑回归的区别?

1)线性回归要求变量服从正态分布,logistic回归对变量分布没有要求。 2)线性回归要求因变量是连续性数值变量,而logistic回归要求因变量是分类型变量。 3)线性回归要求自变量和因变量呈线性关系,而logistic回归不要求自变量和因变量呈线性关系 4)logistic回归是分析因变量取某个值的概率与自变量的关系,而线性回归是直接分析因变量与自变量的关系 ...

处理数据时不进行归一化会有什么影响?归一化的作用是什么?什么时候需要归一化?有哪些归一化的方法?

归一化化定义:我是这样认为的,归一化化就是要把你需要处理的数据经过处理后(通过某种算法)限制在你需要的一定范围内。首先归一化是为了后面数据处理的方便,其次是保正程序运行时收敛加快。所谓特征归一化,就是将不同类型的特征数值大小变为一致的过程。特征归一化的意义1. 提升模型的收敛速度2. 提高精度,这在涉及到一些距离计算的算法时效果显著,比如算法要计算欧氏距离,上图中x2的取值范围比较小,涉及到距离计

【经典】吴恩达《机器学习》课程

如果要推荐《机器学习》的学习课程,那必然首选吴恩达的《机器学习》课程,无论是国内还是国外,这是最火的机器学习入门课程,没有之一。吴恩达老师用易于理解、逻辑清晰的语言对机器学习算法进行介绍,无数新手正是通过这门课程了解了机器学习。吴恩达老师的《机器学习》课程主要有两门,一门是Cousera上的课程,另一门是斯坦福大学的课程CS229: Machine Learning。这两门课程各有侧重点:...

计算机网络有7层、4层、5层的协议体系结构

一、7层7层是指OSI七层协议模型,主要是:应用层(Application)、表示层(Presentation)、会话层(Session)、传输层(Transport)、网络层(Network)、数据链路层(Data Link)、物理层(Physical)。二、5层5层只是OSI和TCP/IP的综合,是业界产生出来的非官方协议模型,但是很多具体的应用。实际应用还是TCP/IP的四层结构...

常见的hash算法及其原理

 Hash,一般翻译做“散列”,也有直接音译为“哈希”的,就是把任意长度的输入(又叫做预映射, pre-image),通过散列算法,变换成固定长度的输出,该输出就是散列值。这种转换是一种压缩映射,也就是,散列值的空间通常远小于输入的空间,不同的输入可能会散列成相同的输出,而不可能从散列值来唯一的确定输入值。简单的说就是一种将任意长度的消息压缩到某一固定长度的消息摘要的函数。  哈希表是根据设定..

核函数详解

核函数包括线性核函数、多项式核函数、高斯核函数等,其中高斯核函数最常用,可以将数据映射到无穷维,也叫做径向基函数(Radial Basis Function 简称 RBF),是某种沿径向对称的标量函数。通常定义为空间中任一点x到某一中心xc之间欧氏距离的单调函数 ,可记作 k(||x-xc||), 其作用往往是局部的,即当x远离xc时函数取值很小。方法原理编辑根据模式识别理论,低维空间...

【经典】吴恩达《机器学习》课程

如果要推荐《机器学习》的学习课程,那必然首选吴恩达的《机器学习》课程,无论是国内还是国外,这是最火的机器学习入门课程,没有之一。吴恩达老师用易于理解、逻辑清晰的语言对机器学习算法进行介绍,无数新手正是通过这门课程了解了机器学习。吴恩达老师的《机器学习》课程主要有两门,一门是Cousera上的课程,另一门是斯坦福大学的课程CS229: Machine Learning。这两门课程各有侧重点:...

到底了