Pod 是可以在 Kubernetes 中创建和管理的、最小的可部署的计算单元。

通常你不需要直接创建 Pod,甚至单实例 Pod。 相反,你会使用诸如 DeploymentJob 这类工作负载资源 来创建 Pod。如果 Pod 需要跟踪状态, 可以考虑 StatefulSet 资源。

Kubernetes 集群中的 Pod 主要有两种用法:

  • 运行单个容器的 Pod。"每个 Pod 一个容器"模型是最常见的 Kubernetes 用例; 在这种情况下,可以将 Pod 看作单个容器的包装器,并且 Kubernetes 直接管理 Pod,而不是容器。
  • 运行多个协同工作的容器的 Pod。 Pod 可能封装由多个紧密耦合且需要共享资源的共处容器组成的应用程序。 这些位于同一位置的容器可能形成单个内聚的服务单元 —— 一个容器将文件从共享卷提供给公众, 而另一个单独的“挂斗”(sidecar)容器则刷新或更新这些文件。 Pod 将这些容器和存储资源打包为一个可管理的实体。( 容器之间紧密关联时才应该使用这种模式 )

一、Pod 怎样管理多个容器

Pod 被设计成支持形成内聚服务单元的多个协作过程(形式为容器)。 Pod 中的容器被自动安排到集群中的同一物理机或虚拟机上,并可以一起进行调度。 容器之间可以共享资源和依赖、彼此通信、协调何时以及何种方式终止自身。

有些 Pod 具有 Init 容器应用容器。 Init 容器会在启动应用容器之前运行并完成。

1.Init 容器

Init 容器是一种特殊容器,在 Pod 内的应用容器启动之前运行。Init 容器可以包括一些应用镜像中不存在的实用工具和安装脚本,比如 类似 sedawkpythondig 这样的工具 。

每个 Pod 中可以包含多个容器, 应用运行在这些容器里面,同时 Pod 也可以有一个或多个先于应用容器启动的 Init 容器。

Init 容器与普通的容器非常像,除了如下两点:

  • 它们总是运行到完成。
  • 每个都必须在下一个启动之前成功完成。

如果 Pod 的 Init 容器失败,kubelet 会不断地重启该 Init 容器直到该容器成功为止。 然而,如果 Pod 对应的 restartPolicy 值为 “Never”,Kubernetes 不会重新启动 Pod。

如果为一个 Pod 指定了多个 Init 容器,这些容器会按顺序逐个运行。 每个 Init 容器必须运行成功,下一个才能够运行。当所有的 Init 容器运行完成时( Init 容器提供了一种机制来阻塞或延迟应用容器的启动 ),Kubernetes 才会为 Pod 初始化应用容器并像平常一样运行。

举例: 下面的例子定义了一个具有 2 个 Init 容器的简单 Pod。 第一个等待 myservice 启动, 第二个等待 mydb 启动。 一旦这两个 Init容器 都启动完成,Pod 将启动 spec 节中的应用容器。

apiVersion: v1
kind: Pod
metadata:
  name: myapp-pod
  labels:
    app: myapp
spec:
  containers:
  - name: myapp-container
    image: busybox:1.28
    command: ['sh', '-c', 'echo The app is running! && sleep 3600']
  initContainers:
  - name: init-myservice
    image: busybox:1.28
    command: ['sh', '-c', "until nslookup myservice.$(cat /var/run/secrets/kubernetes.io/serviceaccount/namespace).svc.cluster.local; do echo waiting for myservice; sleep 2; done"]
  - name: init-mydb
    image: busybox:1.28
    command: ['sh', '-c', "until nslookup mydb.$(cat /var/run/secrets/kubernetes.io/serviceaccount/namespace).svc.cluster.local; do echo waiting for mydb; sleep 2; done"]

2.使用 Pod

你很少在 Kubernetes 中直接创建一个个的 Pod,甚至是单实例(Singleton)的 Pod。 这是因为 Pod 被设计成了相对临时性的、用后即抛的一次性实体。 当 Pod 由你或者间接地由 控制器 创建时,它被调度在集群中的节点上运行。Pod 会保持在该节点上运行,直到 Pod 结束执行、Pod 对象被删除、Pod 因资源不足而被驱逐或者节点失效为止。

说明: 重启 Pod 中的容器不应与重启 Pod 混淆。 Pod 不是进程,而是容器运行的环境。 在被删除之前,Pod 会一直存在。

(1)Pod 和控制器

你可以使用工作负载资源来创建和管理多个 Pod。 资源的控制器能够处理副本的管理、上线,并在 Pod 失效时提供自愈能力。 例如,如果一个节点失败,控制器注意到该节点上的 Pod 已经停止工作, 就可以创建替换性的 Pod。调度器会将替身 Pod 调度到一个健康的节点执行。

使用标签选择器来指定构成应用程序的一组 Pod,这与应用程序的控制器(Deployment,StatefulSet 等) 选择 Pod 的逻辑一样。

Pod 控制器的 .spec.replicas 计算“预期的” Pod 数量。 根据 Pod 对象的 .metadata.ownerReferences 字段来发现控制器。

(2)Pod 模版

负载资源的控制器通常使用 Pod 模板(Pod Template) 来替你创建 Pod 并管理它们。

Pod 模板是包含在工作负载对象中的规范,用来创建 Pod。这类负载资源包括 DeploymentStatefulSetJobDaemonSets等。

工作负载的控制器会使用负载对象中的 PodTemplate 来生成实际的 Pod。 PodTemplate 是你用来运行应用时指定的负载资源的目标状态的一部分。

另外,每个工作负载资源都实现了自己的规则,用来处理对 Pod 模版的更新。

3.Pod 更新与替换

正如前面所述,当某工作负载的 Pod 模板被改变时,控制器会基于更新的模板 创建新的 Pod 对象而不是对现有 Pod 执行更新或者修补操作。

Kubernetes 并不禁止你直接管理 Pod。对运行中的 Pod 的某些字段执行就地更新操作 还是可能的。不过,类似 patchreplace 这类更新操作有一些限制:

  • Pod 的绝大多数元数据都是不可变的。例如,你不可以改变其 namespacenameuid 或者 creationTimestamp 字段;generation 字段是比较特别的,如果更新 该字段,只能增加字段取值而不能减少。
  • 如果 metadata.deletionTimestamp 已经被设置,则不可以向 metadata.finalizers 列表中添加新的条目。
  • Pod 更新不可以改变除 spec.containers[*].imagespec.initContainers[*].imagespec.activeDeadlineSecondsspec.tolerations 之外的字段。 对于 spec.tolerations,你只被允许添加新的条目到其中。
  • 在更新spec.activeDeadlineSeconds 字段时,以下两种更新操作是被允许的:
    1. 如果该字段尚未设置,可以将其设置为一个正数;
    2. 如果该字段已经设置为一个正数,可以将其设置为一个更小的、非负的整数。

(1)资源共享和通信

Pod 使它的成员容器间能够进行数据共享和通信。

每个 Pod 都在每个地址族中获得一个唯一的 IP 地址。 Pod 中的每个容器共享网络名字空间,包括 IP 地址和网络端口。 Pod 内 的容器可以使用 localhost 互相通信。 当 Pod 中的容器与 Pod 之外 的实体通信时,它们必须协调如何使用共享的网络资源 (例如端口)。

在同一个 Pod 内,所有容器共享一个 IP 地址和端口空间,并且可以通过 localhost 发现对方。 他们也能通过如 SystemV 信号量或 POSIX 共享内存这类标准的进程间通信方式互相通信。 不同 Pod 中的容器的 IP 地址互不相同,没有 特殊配置 就不能使用 IPC 进行通信。 如果某容器希望与运行于其他 Pod 中的容器通信,可以通过 IP 联网的方式实现。

Pod 中的容器所看到的系统主机名与为 Pod 配置的 name 属性值相同。

(2)Pod 中的存储

一个 Pod 可以设置一组共享的存储。 Pod 中的所有容器都可以访问该共享卷,从而允许这些容器共享数据。 卷还允许 Pod 中的持久数据保留下来,即使其中的容器需要重新启动。

4.静态 Pod

静态 Pod(Static Pod) 直接由特定节点上的 kubelet 守护进程管理, 不需要API 服务器看到它们。 尽管大多数 Pod 都是通过控制面(例如,Deployment) 来管理的,对于静态 Pod 而言,kubelet 直接监控每个 Pod,并在其失效时重启之。

静态 Pod 通常绑定到某个节点上的 kubelet。 其主要用途是运行自托管的控制面。 在自托管场景中,使用 kubelet 来管理各个独立的 控制面组件

kubelet 自动尝试为每个静态 Pod 在 Kubernetes API 服务器上创建一个 镜像 Pod。 这意味着在节点上运行的 Pod 在 API 服务器上是可见的,但不可以通过 API 服务器来控制。

二、Pod 的生命周期

Pod 遵循一个预定义的生命周期,起始于 Pending 阶段,如果至少 其中有一个主要容器正常启动,则进入 Running,之后取决于 Pod 中是否有容器以 失败状态结束而进入 Succeeded 或者 Failed 阶段。

Pod 在其生命周期中只会被调度一次。 一旦 Pod 被调度(分派)到某个节点,Pod 会一直在该节点运行,直到 Pod 停止或者 被终止

和一个个独立的应用容器一样,Pod 也被认为是相对临时性(而不是长期存在)的实体。 Pod 会被创建、赋予一个唯一的 ID(UID), 并被调度到节点,并在终止(根据重启策略)或删除之前一直运行在该节点。

如果一个节点死掉了,调度到该节点 的 Pod 也被计划在给定超时期限结束后删除

Pod 自身不具有自愈能力。如果 Pod 被调度到某节点 而该节点之后失效,或者调度操作本身失效,Pod 会被删除;与此类似,Pod 无法在节点资源 耗尽或者节点维护期间继续存活。Kubernetes 使用一种高级抽象,称作 控制器,来管理这些相对而言 可随时丢弃的 Pod 实例。

任何给定的 Pod (由 UID 定义)从不会被“重新调度(rescheduled)”到不同的节点; 相反,这一 Pod 可以被一个新的、几乎完全相同的 Pod 替换掉。 如果需要,新 Pod 的名字可以不变,但是其 UID 会不同。

1.Pod 阶段

Pod 的 status 字段是一个 PodStatus 对象,其中包含一个 phase 字段。

下面是 phase 可能的值:

取值描述
Pending(悬决)Pod 已被 Kubernetes 系统接受,但有一个或者多个容器尚未创建亦未运行。此阶段包括等待 Pod 被调度的时间和通过网络下载镜像的时间,
Running(运行中)Pod 已经绑定到了某个节点,Pod 中所有的容器都已被创建。至少有一个容器仍在运行,或者正处于启动或重启状态。
Succeeded(成功)Pod 中的所有容器都已成功终止,并且不会再重启。
Failed(失败)Pod 中的所有容器都已终止,并且至少有一个容器是因为失败终止。也就是说,容器以非 0 状态退出或者被系统终止。
Unknown(未知)因为某些原因无法取得 Pod 的状态。这种情况通常是因为与 Pod 所在主机通信失败。

如果某节点死掉或者与集群中其他节点失联,Kubernetes 会实施一种策略,将失去的节点上运行的所有 Pod 的 phase 设置为 Failed

2.容器状态

Kubernetes 会跟踪 Pod 中每个容器的状态。

一旦调度器(kube-scheduler)将 Pod 分派给某个节点,kubelet 就通过 容器运行时 开始为 Pod 创建容器。 容器的状态有三种:Waiting(等待)、Running(运行中)和 Terminated(已终止)。

要检查 Pod 中容器的状态,你可以使用 kubectl describe pod。 其输出中包含 Pod 中每个容器的状态。

3.容器重启策略

Pod 的 spec 中包含一个 restartPolicy 字段,其可能取值包括 Always、OnFailure 和 Never。默认值是 Always。

restartPolicy 适用于 Pod 中的所有容器。restartPolicy 仅针对同一节点上 kubelet 的容器重启动作。当 Pod 中的容器退出时,kubelet 会按指数回退 方式计算重启的延迟(10s、20s、40s、…),其最长延迟为 5 分钟。 一旦某容器执行了 10 分钟并且没有出现问题,kubelet 对该容器的重启回退计时器执行 重置操作。

(1)Pod 重启的原因

Pod 重启会导致 Init 容器重新执行,主要有如下几个原因:

  • 用户更新 Pod 的规约导致 Init 容器镜像发生改变。Init 容器镜像的变更会引起 Pod 重启。 应用容器镜像的变更仅会重启应用容器。
  • Pod 的基础设施容器 (如 pause 容器) 被重启。这种情况不多见, 必须由具备 root 权限访问节点的人员来完成。
  • restartPolicy 设置为 “Always”,Pod 中所有容器会终止而强制重启。 由于垃圾收集机制的原因,Init 容器的完成记录将会丢失。

4.Pod 状况

Pod 有一个 PodStatus 对象,其中包含一个 PodConditions 数组。Pod 可能通过也可能未通过其中的一些状况测试。

  • PodScheduled:Pod 已经被调度到某节点;

  • ContainersReady:Pod 中所有容器都已就绪;

  • Initialized:所有的 Init 容器 都已成功启动;

  • Ready:Pod 可以为请求提供服务,并且应该被添加到对应服务的负载均衡池中。

    如:

    Conditions:
      Type              Status
      Initialized       True 
      Ready             True 
      ContainersReady   True 
      PodScheduled      True 
    

(1)Pod 就绪态

你的应用可以向 PodStatus 中注入额外的反馈或者信号:Pod Readiness(Pod 就绪态)。 就绪态门控基于 Pod 的 status.conditions 字段的当前值来做决定。 如果 Kubernetes 无法在 status.conditions 字段中找到某状况,则该状况的 状态值默认为 “False”。

如:

kind: Pod
...
spec:
  readinessGates:
    - conditionType: "www.example.com/feature-1"
status:
  conditions:
    - type: Ready                              # 内置的 Pod 状况
      status: "False"
      lastProbeTime: null
      lastTransitionTime: 2018-01-01T00:00:00Z
    - type: "www.example.com/feature-1"        # 额外的 Pod 状况
      status: "False"
      lastProbeTime: null
      lastTransitionTime: 2018-01-01T00:00:00Z
      containerStatuses:
    - containerID: docker://abcd...
      ready: true
...

对于使用定制状况的 Pod 而言,只有当下面的陈述都适用时,该 Pod 才会被评估为就绪:

  • Pod 中所有容器都已就绪;
  • readinessGates 中的所有状况都为 True 值。

当 Pod 的容器都已就绪,但至少一个定制状况没有取值或者取值为 Falsekubelet 将 Pod 的状况设置为 ContainersReady

5.容器探针

kubelet 使用探针Probe对容器执行定期诊断。要执行诊断,kubelet 调用由容器实现的 Handler (处理程序)。有三种类型的处理程序:

  • ExecAction: 在容器内执行指定命令(比如查看文件)。如果命令退出时返回码为 0 则认为诊断成功。
  • TCPSocketAction: 对容器的 IP 地址上的指定端口执行 TCP 检查。如果端口打开,则诊断被认为是成功的。
  • HTTPGetAction: 对容器的 IP 地址上指定端口和路径执行 HTTP Get 请求。如果响应的状态码大于等于 200 且小于 400,则诊断被认为是成功的。

每次探测都将获得以下三种结果之一:

  • Success(成功):容器通过了诊断。
  • Failure(失败):容器未通过诊断。
  • Unknown(未知):诊断失败,因此不会采取任何行动。

针对运行中的容器,kubelet 可以选择是否执行以下三种探针,以及如何针对探测结果作出反应:

  • livenessProbe:指示容器是否正在运行。如果存活态探测失败,则 kubelet 会杀死容器, 并且容器将根据其重启策略决定未来。如果容器不提供存活探针, 则默认状态为 Success
    • 如果容器中的进程能够在遇到问题或不健康的情况下自行崩溃,则不一定需要存活态探针; kubelet 将根据 Pod 的restartPolicy 自动执行修复操作。
    • 如果你希望容器在探测失败时被杀死并重新启动,那么请指定一个存活态探针, 并指定restartPolicy 为 “Always” 或 “OnFailure”。
  • readinessProbe:指示容器是否准备好为请求提供服务。如果就绪态探测失败, 端点控制器将从与 Pod 匹配的所有服务的端点列表中删除该 Pod 的 IP 地址。 初始延迟之前的就绪态的状态值默认为 Failure。 如果容器不提供就绪态探针,则默认状态为 Success
    • 如果要仅在探测成功时才开始向 Pod 发送请求流量,请指定就绪态探针。
    • 如果容器需要加载大规模的数据、配置文件或者在启动期间执行迁移操作,可以添加一个 就绪态探针。
    • 如果你希望容器能够自行进入维护状态,也可以指定一个就绪态探针,检查某个特定于就绪态的因此不同于存活态探测的端点。
  • startupProbe: 指示容器中的应用是否已经启动。如果提供了启动探针,则所有其他探针都会被 禁用,直到此探针成功为止。如果启动探测失败,kubelet 将杀死容器,而容器依其 重启策略进行重启。 如果容器没有提供启动探测,则默认状态为 Success
    • 对于所包含的容器需要较长时间才能启动就绪的 Pod 而言,启动探针是有用的。
    • 如果你的容器启动时间通常超出 initialDelaySeconds + failureThreshold × periodSeconds 总值,你应该设置一个启动探测,对存活态探针所使用的同一端点执行检查。 periodSeconds 的默认值是 10 秒。你应该将其 failureThreshold 设置得足够高, 以便容器有充足的时间完成启动,并且避免更改存活态探针所使用的默认值。 这一设置有助于减少死锁状况的发生。

6.Pod 的终止

由于 Pod 所代表的是在集群中节点上运行的进程,当不再需要这些进程时允许其优雅地终止是很重要的。一般不应武断地使用 KILL 信号终止它们,导致这些进程没有机会 完成清理操作。

例如:(这是一个Pod终止的例子)

  1. 你使用 kubectl 工具手动删除某个特定的 Pod,而该 Pod 的优雅终止限期是默认值(30 秒)。

  2. API 服务器中的 Pod 对象被更新,记录涵盖优雅终止限期在内 Pod 的最终死期,超出所计算时间点则认为 Pod 已死(dead)。 如果你使用 kubectl describe 来查验你正在删除的 Pod,该 Pod 会显示为 “Terminating” (正在终止)。 在 Pod 运行所在的节点上:kubelet 一旦看到 Pod 被标记为正在终止(已经设置了优雅终止限期),kubelet 即开始本地的 Pod 关闭过程。

    1. 如果 Pod 中的容器之一定义了 preStop 回调kubelet 开始在容器内运行该回调逻辑。如果超出优雅终止限期时,preStop 回调逻辑 仍在运行,kubelet 会请求给予该 Pod 的宽限期一次性增加 2 秒钟。

      说明: 如果 preStop 回调所需要的时间长于默认的优雅终止限期,你必须修改 terminationGracePeriodSeconds 属性值来使其正常工作。

    2. kubelet 接下来触发容器运行时发送 TERM 信号给每个容器中的进程 1。

      说明: Pod 中的容器会在不同时刻收到 TERM 信号,接收顺序也是不确定的。 如果关闭的顺序很重要,可以考虑使用 preStop 回调逻辑来协调。

  3. 与此同时,kubelet 启动优雅关闭逻辑,控制面会将 Pod 从对应的端点列表(以及端点切片列表, 如果启用了的话)中移除,过滤条件是 Pod 被对应的 服务以某 选择算符选定。 ReplicaSets和其他工作负载资源不再将关闭进程中的 Pod 视为合法的、能够提供服务的副本。关闭动作很慢的 Pod 也无法继续处理请求数据,因为负载均衡器(例如服务代理)已经在终止宽限期开始的时候将其从端点列表中移除。

  4. 超出终止宽限期限时,kubelet 会触发强制关闭过程。容器运行时会向 Pod 中所有容器内仍在运行的进程发送 SIGKILL 信号。 kubelet 也会清理隐藏的 pause 容器,如果容器运行时使用了这种容器的话。

  5. kubelet 触发强制从 API 服务器上删除 Pod 对象的逻辑,并将优雅终止限期设置为 0 (这意味着马上删除)

  6. API 服务器删除 Pod 的 API 对象,从任何客户端都无法再看到该对象。

(1)强制终止 Pod

默认情况下,所有的删除操作都会附有 30 秒钟的宽限期限。 kubectl delete 命令支持 --grace-period= 选项,允许你重载默认值, 设定自己希望的期限值。

将宽限期限强制设置为 0 意味着立即从 API 服务器删除 Pod。( 必须在设置 --grace-period=0 的同时额外设置 --force 参数才能发起强制删除请求 )如果 Pod 仍然运行于某节点上,强制删除操作会触发 kubelet 立即执行清理操作。

执行强制删除操作时,API 服务器不再等待来自 kubelet 的、关于 Pod 已经在原来运行的节点上终止执行的确认消息。 API 服务器直接删除 Pod 对象,这样新的与之同名的 Pod 即可以被创建。 在节点侧,被设置为立即终止的 Pod 仍然会在被强行杀死之前获得一点点的宽限时间。

(2)自愿干扰和非自愿干扰

Pod 不会消失,除非有人(用户或控制器)将其销毁,或者出现了不可避免的硬件或软件系统错误。

我们把这些不可避免的情况称为应用的非自愿干扰(Involuntary Disruptions)。例如:

  • 节点下层物理机的硬件故障
  • 集群管理员错误地删除虚拟机(实例)
  • 云提供商或虚拟机管理程序中的故障导致的虚拟机消失
  • 内核错误
  • 节点由于集群网络隔离从集群中消失
  • 由于节点资源不足导致 pod 被驱逐。

除了资源不足的情况,大多数用户应该都熟悉这些情况;它们不是特定于 Kubernetes 的。

以下是减轻非自愿干扰的一些方法:

  • 确保 Pod 在请求中给出所需资源
  • 如果需要更高的可用性,请复制应用程序。 (了解有关运行多副本的无状态有状态应用程序的信息。)
  • 为了在运行复制应用程序时获得更高的可用性,请跨机架(使用 反亲和性)或跨区域 (如果使用多区域集群)扩展应用程序。

我们称其他情况为自愿干扰(Voluntary Disruptions)。 包括由应用程序所有者发起的操作和由集群管理员发起的操作。典型的应用程序所有者的操 作包括:

  • 删除 Deployment 或其他管理 Pod 的控制器
  • 更新了 Deployment 的 Pod 模板导致 Pod 重启
  • 直接删除 Pod(例如,因为误操作)

集群管理员操作包括:

三、垃圾收集

Kubernetes 垃圾收集器的作用是删除某些曾经拥有属主(Owner)但现在不再拥有属主的对象。

1.失效 Pod 的垃圾收集

对于已失败的 Pod 而言,对应的 API 对象仍然会保留在集群的 API 服务器上,直到 用户或者控制器进程显式地 将其删除。

控制组件会在 Pod 个数超出所配置的阈值 (根据 kube-controller-managerterminated-pod-gc-threshold 设置)时删除已终止的 Pod(阶段值为 SucceededFailed)。 这一行为会避免随着时间演进不断创建和终止 Pod 而引起的资源泄露问题。

2.属主和附属

某些 Kubernetes 对象是其它一些对象的属主。 例如,一个 ReplicaSet 是一组 Pod 的属主。 具有属主的对象被称为是属主的 附属 。 每个附属对象具有一个指向其所属对象的 metadata.ownerReferences 字段。

有时,Kubernetes 会自动设置 ownerReference 的值。 例如,当创建一个 ReplicaSet 时,Kubernetes 自动设置 ReplicaSet 中每个 Pod 的 ownerReference 字段值。 在 Kubernetes 1.8 版本,Kubernetes 会自动为某些对象设置 ownerReference 的值。 这些对象是由 ReplicationController、ReplicaSet、StatefulSet、DaemonSet、Deployment、 Job 和 CronJob 所创建或管理的。

也可以通过手动设置 ownerReference 的值,来指定属主和附属之间的关系。

3.控制垃圾收集器删除附属

当你删除对象时,可以指定该对象的附属是否也自动删除。 自动删除附属的行为也称为 级联删除(Cascading Deletion)

Kubernetes 中有两种 级联删除 模式:后台(Background) 模式和 前台(Foreground) 模式。

如果删除对象时,不自动删除它的附属,这些附属被称作 孤立对象(Orphaned)

(1)前台级联删除

前台级联删除 模式下,根对象首先进入 deletion in progress 状态。一旦对象被设置为 deletion in progress 状态,垃圾收集器会删除对象的所有附属。 垃圾收集器在删除了所有有阻塞能力的附属(对象的 ownerReference.blockOwnerDeletion=true) 之后,删除属主对象。

如果一个对象的 ownerReferences 字段被一个控制器(例如 Deployment 或 ReplicaSet)设置, blockOwnerDeletion 也会被自动设置,你不需要手动修改这个字段。

(2)后台级联删除

后台级联删除 模式下,Kubernetes 会立即删除属主对象,之后垃圾收集器 会在后台删除其附属对象。

(3)如何级联删除

通过为属主对象设置 deleteOptions.propagationPolicy 字段,可以控制级联删除策略。 可能的取值包括:OrphanForeground 或者 Background

kubectl 命令也支持级联删除。 通过设置 --cascade=foreground,可以使用 kubectl 在前台删除附属对象。 设置 --cascade=orphan,会使附属对象成为孤立附属对象。 当不指定 --cascade 或者明确地指定它的值为 background 的时候, 默认的行为是在后台删除附属对象。

kubectl delete replicaset my-repset --cascade=orphan
kubectl delete replicaset my-repset --cascade=foreground
kubectl delete replicaset my-repset --cascade=background
Logo

K8S/Kubernetes社区为您提供最前沿的新闻资讯和知识内容

更多推荐