[史上最全]数学符号参考手册大全


        1、几何符号
  ⊥   ∥   ∠   ⌒   ⊙   ≡   ≌    △
  2、代数符号
  ∝   ∧   ∨   ~   ∫   ≠    ≤   ≥   ≈   ∞   ∶
  3、运算符号
  如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(√),对数(log,lg,ln),比(:),微分(dx),积分(∫),曲线积分(∮)等。
  4、集合符号
  ∪   ∩   ∈
  5、特殊符号
  ∑    π(圆周率)
  6、推理符号
  |a|    ⊥    ∽    △    ∠    ∩    ∪    ≠    ≡    ±    ≥    ≤    ∈    ←
  ↑    →    ↓    ↖    ↗    ↘    ↙    ∥    ∧    ∨
  &;   §
  ①   ②   ③   ④   ⑤   ⑥   ⑦   ⑧   ⑨   ⑩
  Γ    Δ    Θ     Λ    Ξ    Ο    Π     Σ    Φ     Χ    Ψ    Ω
  α    β    γ    δ    ε    ζ    η    θ    ι    κ    λ    μ     ν
  ξ    ο    π    ρ    σ    τ    υ    φ    χ    ψ    ω
  Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ Ⅶ Ⅷ Ⅸ Ⅹ Ⅺ Ⅻ
  ⅰ ⅱ ⅲ ⅳ ⅴ ⅵ ⅶ ⅷ ⅸ ⅹ
  ∈   ∏   ∑   ∕   √   ∝   ∞   ∟ ∠    ∣   ∥   ∧   ∨   ∩   ∪   ∫   ∮
  ∴   ∵   ∶   ∷   ∽   ≈   ≌   ≒   ≠   ≡   ≤   ≥   ≦   ≧    ≮   ≯   ⊕   ⊙    ⊥
  ⊿   ⌒     ℃
  指数0123:o123
  7、数量符号
  如:i,2+i,a,x,自然对数底e,圆周率π。
  8、关系符号
  如“=”是等号,“≈”是近似符号,“≠”是不等号,“>”是大于符号,“<”是小于符号,“≥”是大于或等于符号(也可写作“≮”),“≤”是小于或等于符号(也可写作“≯”),。“→ ”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“∥”是平行符号,“⊥”是垂直符号,“∝”是成正比符号,(没有成反比符号,但可以用成正比符号配倒数当作成反比)“∈”是属于符号,“⊆ ⊂ ⊇ ⊃”是“包含”符号等。
  9、结合符号
  如小括号“()”中括号“[]”,大括号“{}”横线“—”
  10、性质符号
  如正号“+”,负号“-”,绝对值符号“| |”正负号“±”
  11、省略符号
  如三角形(△),直角三角形(Rt△),正弦(sin),余弦(cos),x的函数(f(x)),极限(lim),角(∠),
  ∵因为,(一个脚站着的,站不住)
  ∴所以,(两个脚站着的,能站住) 总和(∑),连乘(∏),从n个元素中每次取出r个元素所有不同的组合数(C(r)(n) ),幂(A,Ac,Aq,x^n)等。
  12、排列组合符号
  C-组合数
  A-排列数
  N-元素的总个数
  R-参与选择的元素个数
  !-阶乘 ,如5!=5×4×3×2×1=120
  C-Combination- 组合
  A-Arrangement-排列
  13、离散数学符号
  ├ 断定符(公式在L中可证)
  ╞ 满足符(公式在E上有效,公式在E上可满足)
  ┐ 命题的“非”运算
  ∧ 命题的“合取”(“与”)运算
  ∨ 命题的“析取”(“或”,“可兼或”)运算
  → 命题的“条件”运算
  A<=>B 命题A 与B 等价关系
  A=>B 命题 A与 B的蕴涵关系
  A* 公式A 的对偶公式
  wff 合式公式
  iff 当且仅当
  ↑ 命题的“与非” 运算( “与非门” )
  ↓ 命题的“或非”运算( “或非门” )
  □ 模态词“必然”
  ◇ 模态词“可能”
  φ 空集
  ∈ 属于(??不属于)
  P(A) 集合A的幂集
  |A| 集合A的点数
  R^2=R○R [R^n=R^(n-1)○R] 关系R的“复合”
  (或下面加 ≠) 真包含
  ∪ 集合的并运算
  ∩ 集合的交运算
  - (~) 集合的差运算
  〡 限制
  [X](右下角R) 集合关于关系R的等价类
  A/ R 集合A上关于R的商集
  [a] 元素a 产生的循环群
  I (i大写) 环,理想
  Z/(n) 模n的同余类集合
  r(R) 关系 R的自反闭包
  s(R) 关系 的对称闭包
  CP 命题演绎的定理(CP 规则)
  EG 存在推广规则(存在量词引入规则)
  ES 存在量词特指规则(存在量词消去规则)
  UG 全称推广规则(全称量词引入规则)
  US 全称特指规则(全称量词消去规则)
  R 关系
  r 相容关系
  R○S 关系 与关系 的复合
  domf 函数 的定义域(前域)
  ranf 函数 的值域
  f:X→Y f是X到Y的函数
  GCD(x,y) x,y最大公约数
  LCM(x,y) x,y最小公倍数
  aH(Ha) H 关于a的左(右)陪集
  Ker(f) 同态映射f的核(或称 f同态核)
  [1,n] 1到n的整数集合
  d(u,v) 点u与点v间的距离
  d(v) 点v的度数
  G=(V,E) 点集为V,边集为E的图
  W(G) 图G的连通分支数
  k(G) 图G的点连通度
  △(G) 图G的最大点度
  A(G) 图G的邻接矩阵
  P(G) 图G的可达矩阵
  M(G) 图G的关联矩阵
  C 复数集
  N 自然数集(包含0在内)
  N* 正自然数集
  P 素数集
  Q 有理数集
  R 实数集
  Z 整数集
  Set 集范畴
  Top 拓扑空间范畴
  Ab 交换群范畴
  Grp 群范畴
  Mon 单元半群范畴
  Ring 有单位元的(结合)环范畴
  Rng 环范畴
  CRng 交换环范畴
  R-mod 环R的左模范畴
  mod-R 环R的右模范畴
  Field 域范畴
  Poset 偏序集范畴


集合符号

∪ ∩ ∈ ⊆ ⊂ ⊇ ⊃ ∨ ∧ ∞ Φ

 ∪  并
 ∩  交
 ⊂  A属于B
 ⊃  A包括B
 ∈  a∈A,a是A的元素
 ⊆  A⊆B,A不大于B
 ⊇  A⊇B,A不小于B
 Φ  空集
 R  实数
 N  自然数
 Z  整数
 Z+ 正整数
 Z-  负整数


常用数学符号读法

大写小写英文注音国际音标注音中文注音
Ααalphaalfa阿耳法
Ββbetabeta贝塔
Γγgammagamma伽马
Δδdetadelta德耳塔
Εεepsilonepsilon艾普西隆
Ζζzetazeta截塔
Ηηetaeta艾塔
Θθthetaθita西塔
Ιιiotaiota约塔
Κκkappakappa卡帕
λlambdalambda兰姆达
Μμmumiu
Ννnuniu
Ξξxiksi可塞
Οοomicronomikron奥密可戎
πpipai
Ρρrhorou
σsigmasigma西格马
Ττtautau
Υυupsilonjupsilon衣普西隆
Φφphifai
Χχchikhai
Ψψpsipsai普西
Ωωomegaomiga欧米伽


数学符号的种类 

数量符号
  如:i,2+i,a,x,自然对数底e,圆周率π。
  运算符号
  如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(√),对数(log,lg,ln),比(:),微分(dx),积分(∫),曲线积分(∮)等。
  关系符号
  如“=”是等号,“≈”是近似符号,“≠”是不等号,“>”是大于符号,“<”是小于符号,“≥”是大于或等于符号(也可写作“≮”),“≤”是小于或等于符号(也可写作“≯”),。“→”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“∥”是平行符号,“⊥”是垂直符号,“∝”是成正比符号,(没有成反比符号,但可以用成正比符号配倒数当作成反比)“∈”是属于符号,“?”是“包含”符号等。
  结合符号
  如小括号“()”中括号“[]”,大括号“{}”横线“—”
  性质符号
  如正号“+”,负号“-”,绝对值符号“| |”正负号“±”
  省略符号
  如三角形(△),直角三角形(Rt△),正弦(sin),余弦(cos),x的函数(f(x)),极限(lim),角(∠),
  ∵因为,(一个脚站着的,站不住)
  ∴所以,(两个脚站着的,能站住)总和(∑),连乘(∏),从n个元素中每次取出r个元素所有不同的组合数(C(r)(n)),幂(A,Ac,Aq,x^n)等。
  排列组合符号
  C-组合数
  A-排列数
  N-元素的总个数
  R-参与选择的元素个数
  !-阶乘,如5!=5×4×3×2×1=120
  C-Combination-组合
  A-Arrangement-排列


数学符号中英文名称大全

+  plus 加号;正号
-  minus 减号;负号
± plus or minus 正负号
× is multiplied by 乘号
÷ is divided by 除号
= is equal to 等于号
≠ is not equal to 不等于号
≡ is equivalent to 全等于号
≌ is equal to or approximately equal to 等于或约等于号
≈ is approximately equal to 约等于号
< is less than 小于号
> is more than 大于号
≮ is not less than 不小于号
≯ is not more than 不大于号
≤ is less than or equal to 小于或等于号
≥ is more than or equal to 大于或等于号
%  per cent 百分之…
‰ per mill 千分之…
∞ infinity 无限大号
∝ varies as 与…成比例
√ (square) root 平方根
∵ since; because 因为
∴ hence 所以
∷ equals, as (proportion) 等于,成比例
∠ angle 角
⌒ semicircle 半圆
⊙ circle 圆
○ circumference 圆周
π pi 圆周率
△ triangle 三角形
⊥ perpendicular to 垂直于
∪ union of 并,合集
∩ intersection of 交,通集
∫ the integral of …的积分
∑ (sigma) summation of 总和
° degree 度
′ minute 分
″ second 秒
℃ Celsius system 摄氏度


常用数学符号

常用数学符号
+-×÷﹢﹣±/=≈≡≠∧∨∑∏∪∩∈⊙⌒⊥∥∠∽≌<>≤≥≮≯∧∨√﹙﹚[]﹛﹜∫∮∝∞⊙∏º¹²³⁴ⁿ₁₂₃₄·∶½⅓⅔¼¾⅛⅜⅝⅞∴∵∷αβγδεζηθικλμνξοπρστυφχψω%‰℅°℃℉′″¢〒¤○㎎㎏㎜㎝㎞㎡㎥㏄㏎mlmol㏕Pa$£¥㏒㏑壹贰叁肆伍陆柒捌玖拾微毫厘分百千万亿兆吉
几何符号
⊥ ‖ ∠ ⌒ ⊙ ≡ ≌ △
代数符号
∝ ∧ ∨ ~ ∫ ≠ ≤ ≥ ≈ ∞ ∶
运算符号
× ÷ √ ±
集合符号
∪ ∩ ∈ ⊆ ⊂ ⊇ ⊃
特殊符号
∑ π(圆周率)
推理符号

|a| ⊥ ∽ △ ∠ ∩ ∪ ≠ ≡ ± ≥ ≤ ∈ ← ↑ → ↓ ↖ ↗ ↘ ↙ ‖ ∧ ∨


微积分:常用公式、微分方程、级数

 微积分

直观地说,对于一个给定的正实值函数,在一个实数区间上的定积分可以理解为在坐标平面上,由曲线、直线以及轴围成的曲边梯形的面积值(一种确定的实数值)。积分的一个严格的数学定义由波恩哈德·黎曼给出(参见条目“黎曼积分”)。
 

一.基本初等函数求导公式

函数的和、差、积、商的求导法则

反函数求导法则

复合函数求导法则

二、基本积分表

常用凑微分公式

[常用的求导和定积分公式(完美)]
分部积分
不定积分的分部积分

[分部积分法]
定积分的分部积分

微分方程


级数收敛与发散

微分中值定理

令f(x)为连续且光滑,任取其上两点(a, f(a))与(b, f(b)),a < b,那么在这两端点之间必定存在一点(c, f(c)), a < c < b,使得过c的切线斜率等于该二端点割线的斜率,即

Logo

更多推荐