资深工程师教你如何选择运放
工作在线性区就是工作在放大状态。1、分析电路结构,判断电路的性质。如:反相放大器、同相放大器、差分放大器、加法器、减法器工作在线性区;积分放大器、微分放大器、比较器工作在非线性区。二者的外围元件连接方式不同,尤其是负反馈元件的性质不同,非线性的反馈网络含有电容器。2、根据放大器的性质,套用公式计算放大倍数,再结合输入信号的电压范围、电源电压范围,判断输出信号电压是否超出运放最大输出电压。...
工作在线性区就是工作在放大状态。
1、分析电路结构,判断电路的性质。
如:反相放大器、同相放大器、差分放大器、加法器、减法器工作在线性区;积分放大器、微分放大器、比较器工作在非线性区。二者的外围元件连接方式不同,尤其是负反馈元件的性质不同,非线性的反馈网络含有电容器。
2、根据放大器的性质,套用公式计算放大倍数,再结合输入信号的电压范围、电源电压范围,判断输出信号电压是否超出运放最大输出电压。输出信号被电源电压限幅,即使是线性放大器的结构,输出信号与输入信号的关系也是非线性的。
出处:http://m.elecfans.com/article/685803.html
目前市场运放种类繁多,面对不同的使用条件和环境,是否都能选择一样的运放呢?没关系,这是很多电子工程师都会困惑的问题,接下来为你揭开运放选型的神秘面纱。
该如何分析运放电路呢?
在学习运放选型前,我们需要先来透测的学习运放电路的内部结构和原理,对于我们来说运算放大器是模拟电路中十分重要的元件,它能组成放大、加法、减法、转换等各种电路,我们可以运用运放的“虚短”和“虚断”来分析电路,然后应用欧姆定律等电流电压关系,即可得输入输出的放大关系等。
由于运放的电压放大倍数很大,一般通用型运算放大器的开环电压放大倍数都在80 dB以上。而运放的输出电压是有限的,一般在 10 V~14 V。因此运放的差模输入电压不足1 mV,两输入端近似等电位,相当于“短路”。开环电压放大倍数越大,两输入端的电位越接近相等。“虚短”是指在分析运算放大器处于线性状态时,可把两输入端视为等电位,这一特性称为虚假短路,简称虚短。显然不能将两输入端真正短路。
由于运放的差模输入电阻很大,一般通用型运算放大器的输入电阻都在1MΩ以上。因此流入运放输入端的电流往往不足1uA,远小于输入端外电路的电流。故通常可把运放的两输入端视为开路,且输入电阻越大,两输入端越接近开路。“虚断”是指在分析运放处于线性状态时,可以把两输入端视为等效开路,这一特性称为虚假开路,简称虚断。显然不能将两输入端真正断路。
下面本文用虚断和虚断方法来对实际的电路进行分析,如图1-1所示,是常见的反相比例运算放大电路:
图1-1.方向比例运算放大电路
在反相放大电路中,信号电压通过电阻R1加至运放的反相输入端,输出电压Vo通过反馈电阻Rf反馈到运放的反相输入端,构成电压并联负反馈放大电路。
运放的同相端接地=0V,反相端和同相端虚短,所以也是0V,反相输入端输入电阻很高,虚断,几乎没有电流注入和流出,那么R1和Rf相当于是串联的,流过一个串联电路中的每一只组件的电流是相同的,即流过R1的电流和流过Rf的电流是相同的。
根据欧姆定律:
Is= (Vs- V-)/R1……......…(1)
If= (V- - Vo)/Rf……...........(2)
V- = V+ = 0 ……......………(3)
Is= If ……………......………(4)
求解后可能Vo== (-Rf/R1)*Vi
在分析电路的过程中,暂时不用管运放的其他特性,就根据虚短和虚断的特性来分析。当然,若运放不工作在放大区时,不满足虚短和虚断发条件,不能使用此种方法来分析,如比较器。
如下图1-2,是运放实现的加法器,用虚短和虚断的方法来分析此电路。
图1-2.运放实现的加法器
由于电路存在虚短,运放的净输入电压vI=0,反相端为虚地。
vI=0,vN=0…………………............................(5)
反相端输入电流iI=0的概念,通过R2与R1的电流之和等于通过Rf的电流故
(Vs1 – V-)/R1 + (Vs2 – V-)/R2 = (V- –Vo)/Rf....(6)
如果取R1=R2=R3,由a,b两式解得
-Vout=Vs1+Vs………..................................……(7)
式(7)中负号为反相输入所致,若再接一级反相电路,可消去负号。
简言之,虚短是运放正输入端和负输入端的电压相等,近似短路;虚断是流入正负输入端的电流为0。只要掌握了这一点,再运用欧姆定律,即可很容易的分析同相比例放大电路,反向比例放大电路等常用的运放放大电路。
运放具体该怎么选择呢?
1、通用型运算放大器
通用型运算放大器就是以通用为目的而设计的。这类器件的主要特点是价格低廉、产品量大面广,其性能指标能适合于一般性使用。例mA741(单运放)、LM358(双运放)、LM324(四运放),它们是目前应用最为广泛的集成运算放大器。
2、精密运算放大器
精密运算放大器一般指失调电压低于1mV的运放,对于直流输入信号,输入失调电压(VOS)和它的温漂小就行,但对于交流输入信号,我们还必须考虑运放的输入电压噪声和输入电流噪声,在很多应用情况下输入电压噪声和输入电流噪声显得更为重要一些。在传感器类型和(或)其使用环境带来许多特别要求时,例如超低功耗、低噪声、零漂移、轨到轨输入及输出、可靠的热稳定性和对数以千计读数和(或)在恶劣工作条件下提供一致性能的可再现性,运算放大器的选择就会变得特别困难。精密放大电路会多一些电源去耦,滤波等特殊设计的电路。主要区别在于运算放大器上,精密运算放大器的性能比一般运放好很多,比如开环放大倍数更大,CMRR更大,速度比较慢,GBW,SR一般比较小。失调电压或失调电流比较小,温度漂移小,噪声低等等。好的精密运放的性能远不是一般运算放大器可以比得,一般运放的失调往往是几个mV,而精密运放可以小到1uV的水平。要放大微小的信号,必须用精密运放,用了一般的运放,它自身都会带入很大的干扰。要通过外围电路改善,小幅或者微调可以,但无法大幅度或者彻底改变。最常用的精密运放就是OP07,以及它的家族,OP27,OP37,OP177,OPA2333。其他的还有很多,比如美国AD公司的产品,很多都是OPA带头的。
3、高阻型集成运算放大器
高阻型集成运算放大器的特点是差模输入阻抗非常高,输入偏置电流非常小,一般rid>(109~1012)W,IIB为几皮安到几十皮安。实现这些指标的主要措施是利用场效应管高输入阻抗的特点,用场效应管组成运算放大器的差分输入级。用FET作输入级,不仅输入阻抗高,输入偏置电流低,而且具有高速、宽带和低噪声等优点,但输入失调电压较大。常见的集成器件有LF356、LF355、LF347(四运放)及更高输入阻抗的CA3130、CA3140等。
4、低温漂型运算放大器
在精密仪器、弱信号检测等自动控制仪表中,总是希望运算放大器的失调电压要小且不随温度的变化而变化。低温漂型运算放大器就是为此而设计的。常用的高精度、低温漂运算放大器有OP-07、OP-27、AD508及由MOSFET组成的斩波稳零型低漂移器件ICL7650等。
5、高速型运放
高速型运放在快速A/D和D/A转换器、视频放大器中,要求集成运算放大器的转换速率SR一定要高,单位增益带宽BWG一定要足够大,像通用型集成运放是不能适合于高速应用的场合的。高速型运算放大器主要特点是具有高的转换速率和宽的频率响应。常见的运放有LM318、mA715等,其SR=50~70V/us,BWG>20MHz。
6、低功耗型运放
低功耗型运放由于电子电路集成化的最大优点是能使复杂电路小型轻便,所以随着便携运算放大器式仪器应用范围的扩大,必须使用低电源电压供电、低功率消耗的运算放大器相适用。常用的运算放大器有TL-022C、TL-060C等,其工作电压为±2V~±18V,消耗电流为50~250mA。目前有的产品功耗已达微瓦级,例如ICL7600的供电电源为1.5V,功耗为10mW,可采用单节电池供电。
7、高压大功率型运算放大器
高压大功率型运算放大器的输出电压主要受供电电源的限制。在普通的运算放大器中,输出电压的最大值一般仅几十伏,输出电流仅几十毫安。若要提高输出电压或增大输出电流,集成运放外部必须要加辅助电路。高压大电流集成运算放大器外部不需附加任何电路,即可输出高电压和大电流。例如D41集成运放的电源电压可达±150V,mA791集成运放的输出电流可达1A。
相信通过上面的介绍,对不同使用条件下是否能使用同一种运放,显然是比较清楚的,实际选择集成运放时,还应考虑其他因素。例如信号源的性质,是电压源还是电流源;负载的性质,集成运放输出电压和电流的是否满足要求;环境条件,集成运放允许工作范围、工作电压范围、功耗与体积等因素是否满足要求。
最后再赠送大家一些评价运放的小经验,评价集成运放性能的优劣,应看其综合性能。SR为转换率,单位为V/ms,其值越大,表明运放的交流特性越好;Iib为运放的输入偏置电流,单位是nA;VOS为输入失调 电压,单位是mV。Iib和VOS值越小,表明运放的直流特性越好。所以,对于放大音频、视频等交流信号的电路,选SR(转换速率)大的运放比较合适;对于处理微弱的直流信号的电路,选用精度比较的高的运放比较合适(既失调电流、失调电压及温飘均比较小)。在没有特殊要求的场合,尽量选用通用型集成运放,这样既可降低成本,又容易保证货源。当一个系统中使用多个运放时,尽可能选用多运放集成电路,例如LM324、LF347等都是将四个运放封装在一起的集成电路。
运放正相与反相放大性能的差异
本文主要是关于运放正相与反相放大的相关介绍,并着重对运放正相与反相放大性能的差异进行了详尽的阐述。
运算放大器
运算放大器(简称“运放”)是具有很高放大倍数的电路单元。在实际电路中,通常结合反馈网络共同组成某种功能模块。它是一种带有特殊耦合电路及反馈的放大器。其输出信号可以是输入信号加、减或微分、积分等数学运算的结果。 [1] 由于早期应用于模拟计算机中,用以实现数学运算,故得名“运算放大器”。运放是一个从功能的角度命名的电路单元,可以由分立的器件实现,也可以实现在半导体芯片当中。随着半导体技术的发展,大部分的运放是以单芯片的形式存在。运放的种类繁多,广泛应用于电子行业当中。
运放如图有两个输入端a(反相输入端),b(同相输入端)和一个输出端o。也分别被称为倒向输入端非倒向输入端和输出端。当电压U-加在a端和公共端(公共端是电压为零的点,它相当于电路中的参考结点。)之间,且其实际方向从a 端高于公共端时,输出电压U实际方向则自公共端指向o端,即两者的方向正好相反。当输入电压U+加在b端和公共端之间,U与U+两者的实际方向相对公共端恰好相同。为了区别起见,a端和b 端分别用“-”和“+”号标出,但不要将它们误认为电压参考方向的正负极性。电压的正负极性应另外标出或用箭头表示。
一般可将运放简单地视为:具有一个信号输出端口(Out)和同相、反相两个高阻抗输入端的高增益直接耦合电压放大单元,因此可采用运放制作同相、反相及差分放大器。
运放的供电方式分双电源供电与单电源供电两种。对于双电源供电运放,其输出可在零电压两侧变化,在差动输入电压为零时输出也可置零。采用单电源供电的运放,输出在电源与地之间的某一范围变化。
运放的输入电位通常要求高于负电源某一数值,而低于正电源某一数值。经过特殊设计的运放可以允许输入电位在从负电源到正电源的整个区间变化,甚至稍微高于正电源或稍微低于负电源也被允许。这种运放称为轨到轨(rail-to-rail)输入运算放大器。
运算放大器的输出信号与两个输入端的信号电压差成正比,在音频段有:输出电压=A0(E1-E2),其中,A0 是运放的低频开环增益(如 100dB,即 100000 倍),E1 是同相端的输入信号电压,E2 是反相端的输入信号电压。
运算放大器是用途广泛的器件,接入适当的反馈网络,可用作精密的交流和直流放大器、有源滤波器、振荡器及电压比较器。
反相放大器
电子电路中的运算放大器,有同相输入端和反相输入端,输入端的极性和输出端是同一极性的就是同相放大器,而输入端的极性和输出端相反极性的则称为反相放大器。反相放大器电路具有放大输入信号并反相输出的功能。
反相放大器电路具有放大输入信号并反相输出的功能。“反相”的意思是正、负号颠倒。这个放大 器应用了负反馈技术。所谓负反馈,即将输出信号的一部分返回到输入,在图所示电路中,象把输出Vout经由R2 连接(返回)到反相输入端(-)的连接方法就是负反馈。
运算放大器具有以下特点,当输出端不加电源电压时,正相输入端(+)和反相输入端(-)被认为施加了相同的电压,也就是说可以认为是虚短路。所以,当正相输入端 (+)为0V时,A点的电压也为0V。
运算放大器的输入阻抗极高,反相输入端(-)中基本上没有电流。因此,当Ie经由A点流向R2时,I1和I2电流基本相等。由以上条件,对R2使用欧姆定律,则得出Vout=- I1xR2。I1为负是因为I2从电压为0V的点A 流出。换一个角度来看,当反相输入端(-)的输入电压上升时,输出会被反相,向负方向大幅度放大。由于这 个负方向的输出电压经由R2与反相输入端相连,因此,会使反相输入端(-)的电压上升受阻。反相输入端和正 相输入端电压都变为0V,输出电压稳定。
通过这个放大器电路中输入与输出的关系来计算一下增益。增益是Vout和Vin的比,即 Vout/Vin= (-I1xR2) / (I1xR1) =- R2/R1。所得增益为-,表示波形反相。
应用:
积分器
将原来反相放大器R2电阻,换成一颗电容器C2 , 此时输入信号Vi与输出信号Vo之关系,形成一积分关系。
微分器
将原来反相放大器R1电阻,换成一颗电电容器C ,此时输入信号Vi与输出信号Vo之关系,即变形成一微分关系。
加法器
若将反相放大器稍微变化一下,此时输入信号与输出信号Vo之关系,若R1 = R2 = R3 =。..= Rn = Rf,就可简化为Vo =-(V1+V2+V3+.。.+Vn),形成一加法关系。
运放正相与反相放大性能的差异
电子电路中的运算放大器,有同相输入端和反相输入端,输入端的极性和输出端是同一极性的就是同相放大
器,而输入端的极性和输出端相反极性的则称为反相放大器。
运放的同相和反相区别:
1、同相放大器的输入阻抗和运放的输入阻抗相等,接近无穷大,同相放大器的输入电阻取值大小不影响输入阻抗;而反相放大器的输入阻抗等于信号到输入端的串联电阻的阻值。因此当要求输入阻抗很高的时候就应选择同相放大器!
2、同相放大器的输入信号范围受运放的共模输入电压范围的限制,反相放大器则无此限制。因此如果要求输入阻抗不高且相位无要求时,首选反相放大,因为反相放大只存在差模信号,抗干扰能力强,可以得到更大的输入信号范围。
3、在设计中要求放大倍数相同的情况下尽量选择数值小的电阻配合,这样可以减小输入偏置电流的影响和分布电容的影响。如果很计较功耗,则要在电阻数值方面折中。
结语
关于运放正相与反相放大的相关介绍就到这了,如有不足之处欢迎指正。
更多推荐
所有评论(0)