异常检测—LOF算法简介以及Python实现
参考资料https://dl.acm.org/ft_gateway.cfm?id=335388&ftid=2057&dwn=1&CFID=51876766&CFTOKEN=b2427295e6580441-94D5C0E4-E786-FC7
LOF(Local Outlier Factor)算法是基于密度的异常点检测算法,适合于高维数据检测。
核心思想
离群点处的密度应该较邻域内其他点的密度小。
基本概念
k距离:对于点p,将其他点与之距离进行从小到大排序,第k个即为k距离
k距离邻域:到点p的距离小于等于k距离点,共k个
可达距离:若到点p的实际距离小于k距离,则为k距离,反之为实际距离
局部可达密度:邻域内点到p点可达距离平均值的倒数。(注意方向不要搞反)
l
r
d
(
p
)
=
k
∑
r
d
i
s
t
lrd(p)=\frac{k}{\sum rdist}
lrd(p)=∑rdistk
局部离群因子:领域内点的局部可达密度的均值除以p点的局部可达密度
l
o
f
(
p
)
=
∑
l
r
d
k
l
r
d
(
p
)
lof(p)=\frac{\frac{\sum lrd}{k}}{lrd(p)}
lof(p)=lrd(p)k∑lrd
局部离群因子(LOF)的大小代表该点为离群点的可信度。即因子越大,该点越可能是离群点。
代码示例
from scipy.spatial.distance import cdist
import numpy as np
class LOF:
def __init__(self, data, k, epsilon=1.0):
self.data = data
self.k = k
self.epsilon = epsilon
self.N = self.data.shape[0]
def get_dist(self):
# 计算欧式距离矩阵
return cdist(self.data, self.data)
def _kdist(self, arr):
# 计算k距离
inds_sort = np.argsort(arr)
neighbor_ind = inds_sort[1:self.k + 1] # 邻域内点索引
return neighbor_ind, arr[neighbor_ind[-1]]
def get_rdist(self):
# 计算可达距离
dist = self.get_dist()
nei_kdist = np.apply_along_axis(self._kdist, 1, dist)
nei_inds, kdist = zip(*nei_kdist)
for i, k in enumerate(kdist):
ind = np.where(dist[i] < k) # 实际距离小于k距离,则可达距离为k距离
dist[i][ind] = k
return nei_inds, dist
def get_lrd(self, nei_inds, rdist):
# 计算局部可达密度
lrd = np.zeros(self.N)
for i, inds in enumerate(nei_inds):
s = 0
for j in inds:
s += rdist[j, i]
lrd[i] = self.k / s
return lrd
def run(self):
# 计算局部离群因子
nei_inds, rdist = self.get_rdist()
lrd = self.get_lrd(nei_inds, rdist)
score = np.zeros(self.N)
for i, inds in enumerate(nei_inds):
N = len(inds)
lrd_nei = sum(lrd[inds])
score[i] = lrd_nei / self.k / lrd[i]
return score, np.where(score > self.epsilon)[0]
if __name__ == '__main__':
np.random.seed(42)
X_inliers = 0.3 * np.random.randn(100, 2)
X_inliers = np.r_[X_inliers + 2, X_inliers - 2]
X_outliers = np.random.uniform(low=-4, high=4, size=(20, 2))
data = np.r_[X_inliers, X_outliers]
lof = LOF(data, 5, epsilon=1.2)
score, out_ind = lof.run()
outliers = data[out_ind]
import matplotlib.pyplot as plt
plt.scatter(data[:, 0], data[:, 1], color='b')
plt.scatter(outliers[:, 0], outliers[:, 1], color='r')
plt.show()
参考资料
https://dl.acm.org/ft_gateway.cfm?id=335388&ftid=2057&dwn=1&CFID=51876766&CFTOKEN=b2427295e6580441-94D5C0E4-E786-FC78-16E741661C2500A7
https://blog.csdn.net/wangyibo0201/article/details/51705966
注:代码未经严格测试,仅作示例。如有不当之处,请指正。
更多推荐
所有评论(0)